

US Army Corps of Engineers
Hydrologic Engineering Center

Branch-Bound Enumeration for Reservoir Flood Control Plan Selection

Research Document No. 35

May 1987

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

Branch-Bound Enumeration for Reservoir Flood Control Plan Selection

by

Teresa Helen Bowen

Master of Science Thesis University of California, Davis

May 1987

US Army Corps of Engineers Water Resources Support Center Hydrologic Engineering Center 609 Second Street Davis, CA 95616

Branch-Bound Enumeration for Reservoir Flood Control Plan Selection

Table of Contents

					Page
ist of ist of Prefac	Table				ii ii iii
Cha	pter				
1	Intro	oductio	n		1
2	Engineering and Economic Considerations in Formulating Flood Damage Mitigation Measures				
				Computation Methodology	3
	2.2		s of Flood ency Fund	d Plain Management Measures on Stage, Damage, Flow and	4
	2.3	•	•	n Selection	6
3	System Formulation Strategies				
	3.1	Syster	ms Analys	sis Models	7
		3.1.1	Dynami	c Programming (DP)	7
				Programming (LP)	8
			Nonline: Simulati	ar Programming (NLP)	8 9
		3.1.5		ion Using HEC Programs	10
			3.1.5.1	Hydrologic/Hydraulic Analysis Programs	10
			3.1.5.2		12
			3.1.5.3	Data Management Programs (DSS)	13
				und Applications in Water Resources Planning	13
				und General Description	14
	3.4	Branc	n-and-Bo	und Procedure	15
4			-	the Branch-and-Bound Algorithm in Conjunction with	
	HE	C-5 and	EAD		19
	4.1	Gener	al Approa	ach	19
		Result		umptions and Limitations	21
	/1 4	1110000		COLORO DE STALLARIA SILAR	

Table of Contents

Chapter				
5	Example Problem Solution	23		
	 5.1 Description of Basin Flooding Problem 5.2 Simulation/Optimization Results 5.3 Effectiveness of Algorithm 5.4 Sensitivity Analysis 	23 26 26 28		
6	Recommendations for Future Work	31		
7	Conclusions	34		
List of I	References	34		
	List of Figures			
Figure	Number			
1 2 3 4 5 6 7 8	Basic and Derived Functions for Expected Annual Damages Branch-and-Bound Algorithm Branch-and-Bound Link to Other Programs Fall River Existing System Fall River Basin Modified System Schematic Subdivision of Plans for Fall River Basin Branch-and-Bound Process for Fall River Example Branch-and-Bound Process for Sensitivity Example	5 18 20 24 25 27 29 30		
	List of Tables			
Table N	Number			
1	Computer Programs for Evaluation of Flood-Damage-Mitigation Measures	10		
Appe	endices			
B C D	HEC Data Storage System (DSS) Description of Branch-and-Bound Routines Input Data Overview Branch-and-Bound Program Output Sensitivity Analysis Output Branch-and-bound Program Listing			

Preface

This thesis was submitted by Teresa Bowen in partial satisfaction of the requirements for the degree of Master of Science in Engineering in the Graduate Division of the University of California, Davis, CA. Much of the developmental work was conducted while Ms. Bowen was a temporary employee at HEC. The application of HEC simulation programs and the Flood Damage Analysis Package were utilized for this research. Dr. David Ford, a member of the thesis committee, was an HEC employee during the conduct of this research. He has been a proponent of the Branch-and-Bound Enumeration procedure for the systematic evaluation of planning alternatives. This thesis is published as an HEC Research Document in support of their efforts to make the procedure more available to planning professionals.

Acce	ssion For						
NTIS	GRA&I						
DTIC	TAB	ō					
Unannounced							
Justification							
By Det Token SO Distribution/ Availability Codes							
	Avail and/or						
Dist	Special	Ī					
A-1							

Introduction

Flood damage analysis is performed to provide quantitative information of the social cost of flooding and to provide a basis for formulating, evaluating, and selecting the optimal flood-damage-mitigation plan. The Water Resources Council Principles and Guidelines (1983), which guides water resources planning studies for the Corps and all Federal agencies, requires that the plan selected for implementation be the one that yields the maximum net benefit consistent with environmental, institutional, social and financial requirements. A flood-damage-mitigation plan consists of a set of measures which are intended to function as a system to mitigate, or reduce, flood damages at one or more sites in a basin. A measure is a single proposed action at a site and includes a wide-range of alternatives from a reservoir, to a levee, to floodproofing of structures to the implementation of a new set of operating rules for an existing reservoir system.

Complete plans are formed by combining various potential measures at all the sites in the basin. Evaluation of the net benefit of a proposed plan requires hydrologic, hydraulic, and economic analyses of the system. Plan selection can then be done by evaluating all possible plans (combinations of measures) and selecting the plan with the maximum net economic benefit (the optimal plan). For a few sites with a few components, analysis of the number of alternative systems that are feasible is generally manageable and exhaustive evaluation provides the strategy for determining the best system. Generalized simulation models are often the tools selected to perform the analysis and evaluation of the proposed alternative plans. However, in large systems with many sites and components, evaluation of every possible alternative system cannot be practically accomplished. For example, to determine the optimal plan of a six-site system with five alternative measures proposed at each site, 7776 (6⁵) combinations of alternative measures would have to be analyzed and evaluated. A method to efficiently and with certainty identify the optimal plan is needed for such a system.

Various systems analysis techniques are used in water resources planning. The goal of systems analysis is to find an optimum decision for system operation, meeting all constraints while maximizing or minimizing some objective function. The most common techniques are linear programming and dynamic programming. These methods pose several disadvantages in the analysis of water resource systems. The most important disadvantage is that optimization models implicitly examine all possible decision alternatives, while water resources planning is limited to selecting between a finite number of discrete alternatives.

A systems analysis technique called branch-and-bound enumeration has been applied in the water resources planning field to solve problems of selecting, sizing, sequencing, and scheduling projects. Branch-and-bound methods are general schemes of finding an optimum of a very large number of discrete points, or alternative plans. Branch-and-bound is therefore particularly applicable to the problem of flood control plan selection.

This work uses a branch-and-bound algorithm to expedite the plan selection process between discrete alternative plans. The plans are evaluated using Hydrologic Engineering Center simulation models to perform the hydrologic, hydraulic, and economic analysis. HEC programs are widely used and are based on accepted engineering and economic principles.

The first part of this research focuses on development of a branch-and-bound enumeration algorithm. The second major portion of this work is to link the routine to existing HEC simulation programs. This thesis presents the findings of the research.

Engineering and Economic Considerations in Formulating Flood-Damage-Mitigation Plans

The major objective of system formulation is to determine what combination of measures will produce the "best" (optimal) solution. The following information is useful in achieving this objective:

- 1. An understanding of the effects of each measure and under what conditions it is effective.
- 2. A systematic strategy for formulation to achieve the stated objective.
- 3. A means to assess the overall performance of each system.
- 4. An efficient, systematic approach to identify the "best" plan.

The following sections discuss the methodology for computing flood damages, the effects of various floodplain management measures on hydrologic and economic relationships, and evaluation tools used to assess the system performance.

The remainder of the report explores the fourth step and final objective of system formulation, that of identification of the optimal plan.

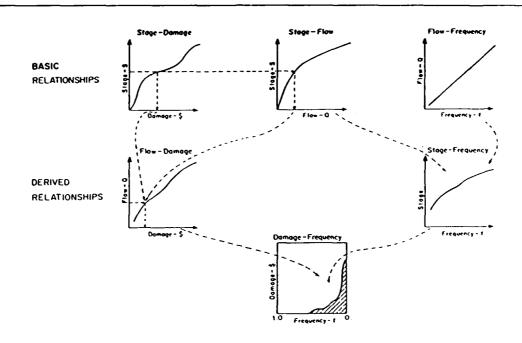
2.1. Flood Damage Computation Methodology

The principal reason for computing flood damage is to determine the effectiveness of different flood plain management plans. The benefits of a project are measured in terms of a reduction in flood damages, also called an inundation reduction benefit. In order to evaluate flood damages over the life of a project, the concept of expected annual flood damage is used. Expected annual damage is the frequency-weighted sum of damage for the full range of possible damaging flood events and can be viewed as what might be expected to occur in the present or any future year. It represents the annual damage for a particular set of hydrologic, hydraulic and damage conditions.

Expected annual flood damage computations may be performed by two distinctly different approaches. The first way is to compute the average annual damage value from historic records of all floods observed. Historic records are often short and the magnitude and frequency may not adequately represent the magnitudes and frequency of future floods. A plan selected based on historic events may not be the optimal plan in the long run.

Another approach is the frequency method, where measures are evaluated by determining their effects on the basic relationships that determine the damage, and computing the expected annual damage. Data is gathered from specific flood events, observed or synthetic, and the damage value is weighted according to its percent chance of exceedence. This exceedence-damage relationship can be integrated numerically to yield the expected annual damage (also called average annual damage).

The exceedence frequency-damage relationship can be developed using several different combinations of stage¹, flow, damage, and frequency data. The easiest way is to relate stage or flow to damage and to relate the same parameter to exceedence frequency. If the damage and frequency data are not directly related to a common parameter then another relationship must be used. This is commonly the rating curve or stage-flow function. Thus, if damage is expressed as a function of stage and exceedence frequency as a function of flow, damage can be related to frequency with the stage-flow function. Figure 1, excerpted from the EAD Users Manual (HEC, 1984), summarizes the basic technical analysis, derived functional relationships, and general processing to develop the damage-frequency function.


Because stage, flow, frequency and damage relationships vary along a river, it is common practice to divide a river into reaches and specify a set of relationships to represent conditions for that reach. An index location is selected within the reach and a single stage- or flow-frequency relationship and stage-flow relationship are applied at that location and are considered representative of these variables for the entire reach. If damage is categorized for analysis, several stage- or flow-damage relationships may be used in the reach.

2.2 Effects of Floodplain Management Measures on Stage, Damage, Flow, and Frequency Functions

Flood-damage-mitigation measures protect damageable property in two ways:(1) by modifying the flow of flood waters, and (2) by reducing the potential for flood damage. A third category of flooddamage-mitigation measures do not reduce the damages at all but reduce the effects by redistributing the loss burden through flood insurance and other programs. Measures in the first category are also known as flood control projects and often involve a costly structural solution. Typical measures are reservoirs, floodwalls, levees, channel modifications, and diversion projects. Measures designed to manage water can alter various hydrologic and hydraulic relationships at specific locations in a basin. The measures in the second category are also called nonstructural measures because no large-scale construction usually is required for implementation. These measures are usually less costly than structural measures and therefore often are implemented locally. Floodproofing, relocation, flood warning and land-use control are typical measures in this category. Measures designed to avoid flood damages rather than confine flood waters alter only economic relationships and are evaluated by altering the damage functions. The complexities, varying nature, and scope of flood-damagemitigation measures requires an experienced planner in the formulation process. Evaluation, however, is more straightforward. Any type of measure may be evaluated as long as the corresponding damage functions can be defined.

Enlightened flood control planning today explores alternative measures in all categories during the preliminary plan formulation stage. Detailed plans are developed which are comprised of a combination of structural and nonstructural measures and perhaps flood insurance programs, too. The analysis and evaluation of structural and nonstructural measures is discussed in the following sections.

¹The term stage is used in this report to represent both stage (distance above a certain local datum) and elevation (distance above a common datum for the entire study area.)

The basic and derived evaluation relationships are shown above. Concepts important to their construction are described herein.

Stage-Flow Relationship: This is a basic hydraulic function that shows for a specific location, the relationship between flow rate and stage. It is frequently referred to as a 'rating curve' and is normally derived from water surface profile computations.

Stage-Damage Relationship: This is the economic counterpart to the stage-flow function and represents the damage which will occur for various river stages. Usually the damage represents an aggregate of the damage which could occur same distance upstream and downstream from the specified location. It is usually developed from field damage surveys.

Flow-Frequency Relationship: This defines the relationship between exceedance frequency and flow at a location. It is the basic function describing the probability nature of streamflow and is commonly determined from either statistical analysis of gaged flow data or through watershed model calculations.

Damage-Frequency Relationship: This relationship is derived by combining the basic relationships using the common parameters stage and flow. For example, the damage for a specific exceedance frequency is determined by ascertaining the corresponding flow rate from the flow-frequency function, the corresponding stage from the stage-flow function and finally the corresponding damage from the stage-damage relationship. Any changes which occur in the basic relationships because of watershed development or flood plain management measure implementation will change the damage-frequency function and therefore the expected annual damage that is computed as the integral of the function (area underneath).

Other Functional Relationship: The flow-damage relationship is developed by combining the stage-damage with the stage-flow relationship using stage as the common parameter. The stage-frequency relationship is developed by combining the stage-flow with the flow-frequency relationship using flow as the common parameter. The damage-frequency relationship could then be developed as a further combination of these derived relationsips.

Figure 1 Basic and Derived Realtionships

2.3 Criteria for Plan Selection

The Water Resources Council's <u>Principles and Guidelines</u> of 1983 define the primary goal of implementing flood-damage-mitigation plans as enhancement of the National Economic Development (NED) account. From the NED standpoint, the best plan is the plan that yields the maximum net benefits (benefits minus cost). The cost is the sum of capital cost, operation, maintenance, power, replacement, and any other costs related to plan implementation. The benefit is the difference between flood damage with base conditions and flood damage under the same hydrologic conditions with the implemented plan (modified condition). The single objective of plan selection is to select the plan with the maximum net benefit, consistent with environmental, institutional, social and financial requirements. However, no computer model can replace the judgement of an experienced planner or engineer. A simulation model can greatly aid the engineer in the analysis and evaluation and an optimization model can help in selection of the "best" plan, but it is the only the engineer who conclutionally make the decisions.

System Formulation Strategies

3.1 Systems Analysis Models

A system is best in terms of the national economic criteria if it yields system net benefits that exceed those of any other feasible system. When there are only a few components, analysis of the number of alternative systems that are feasible is generally manageable and exhaustive evaluation provides the strategy for determining the best system. The analysis of a complex water resources system may involve thousands of decision variables and constraints and exhaustive evaluation of all feasible alternative systems cannot be practically accomplished. For this instance, a strategy is needed that reduces the number of alternatives to be evaluated to a manageable number while providing a good chance of identifying the best system. Once the objectives and constraints have been determined, most problems lend themselves to solution techniques developed in the fields of operations research and management science. Many successful applications of optimization techniques have been made in reservoir operation planning studies. Extensive literature review of the subject of optimization of reservoir operations shows that no general algorithm exists (Yeh, 1985). The choice of methods depends on the characteristics of the reservoir system being considered, the availability of data, and on the particular system objectives and constraints. In general, the available methods can be classified as follows:

- 1. Dynamic programming (DP)
- 2. Linear programming (LP)
- 3. Nonlinear programming (NLP)
- 4. Simulation

3.1.1 Dynamic Programming (DP) Models

Dynamic programming, a method formulated largely by Bellman (1957), is a procedure for optimizing a multistage decision process. DP is used extensively in the optimization of water resource systems (Buras, 1966). The popularity and success of this technique can be attributed to the fact that the nonlinear and stochastic features which are characteristic of many water resources systems can be translated into a DP formulation. Another advantage is that highly complex problems with large number of variables can be decomposed into a series of subproblems which are solved recursively.

There are numerous studies using dynamic programming and its variation to find optimal reservoir operations where flood control is a part of the operations. Buras (1965), Fitch, et.al. (1970), Hall, et.al. (1968), Young (1967), and Becker and Yeh (1974) have used conventional DP to determine optimum reservoir operation for a deterministic sequence of inflows. Beard and Chang (1979) describe stochastic dynamic programming techniques to derive flood control reservoir operation rules that minimize expected damages that are functions of the maximum outflow rate, the amount of floodwarning time and the duration of flooding.

Variations on DP include incremental DP (IDP), discrete differential DP (DDDP), stochastic DP, and differential DP (DDP).

3.1.2 Linear Programming (LP) Models

LP has been one of the most widely used techniques in water resources management. It is concerned with solving a special type of problem: one in which all relations among the variables are linear, both in constraints and in the objective function to be optimized. Although objective functions as well as some of the constraints are often nonlinear, various linearization techniques can be used.

A typical planning objective for LP applied to a reservoir operation model is to minimize the capacity (or cost) of the reservoir while meeting all system requirements or to maximize total system net annual benefits. Cost functions must be convex and benefit functions concave for LP to be successfully used.

LP has been applied to solve water resources management problems varying from relatively simple problems of allocation of resources to complex situations of system operation and management.

Dorfman (1962) demonstrated how LP could be used with three versions of a model, increasing in complexity from a simplified river basin planning problem to a model where inflows are treated stochastically. Hall and Shepard (1967) developed a DP-LP technique for a reservoir optimization problem. Windsor (1973) developed a methodology using a recursive LP a the optimization tool for the analysis of a multi-reservoir flood control system. Becker and Yeh (1974) suggested a combined solution methodology of LP-DP for the determination of optimum real-time reservoir operations associated with the California Central Valley Project. Dalgi and Miles (1980) proposed a simple solution for four reservoirs in series for which the annual total head of water is maximized.

Variations on the basic LP model include chance-constrained LP, stochastic LP models, and stochastic programming with recourse. Some difficulties in application of these variations have been noted (Yeh,1985).

The main advantages of LP include (1) its ability to easily accommodate relatively high dimensionality, (2) a guarantee of a global optima, and (3) the availability of standard LP package computer codes.

3.1.3 Nonlinear Programming (NLP) Models

Nonlinear programming (NLP) is not as popular as LP and DP procedures in water resources systems analysis. The disadvantages are that the optimization process is generally slow and requires large amounts of computer resources. The mathematics involved is much more complicated than in the linear case, and NLP, unlike DP cannot easily accommodate the stochastic nature of inputs to the system.

NLP does provide, however, a more general mathematical formulation and may provide a foundation for analysis by other methods. NLP can effectively handle a nonseparable objective function and nonlinear constraints which many programming techniques cannot. NLP includes quadratic programming, geometric programming, and separable programming. NLP will gain its practical importance in water resources systems analysis with the development of computer technology and effective algorithms for large-scale, multi-objective optimization (Cohon and Marks, 1975; Haimes, 1977).

3.1.4 Simulation Models

Simulation is a modeling technique that is used to approximate the behavior of a system on a computer, representing all the characteristics of the system largely by a mathematical or algebraic description (Maass, et al.,1962). It is different from a mathematical programming technique. Mathematical programming techniques find an optimum decision for system operation meeting all system constraints while maximizing or minimizing some objective. Alternately, the simulation model provides the response of the system for certain inputs, which include decision rules, so that it enables a decision maker to examine the consequences of various scenarios of an existing or proposed system. A simulation model is generally more flexible and versatile in simulating the response of the system than a mathematical programming model which usually requires assumptions on model structure and system constraints. Optimization implicitly examines all possible decision alternatives while simulation is limited to a finite number of input decision alternatives. In the water resources planning field, we are in fact selecting between discrete alternatives. This is one of the main disadvantages of most optimization models.

A typical simulation model for a water resources system is simply a model that simulates the interval-by-interval operation of the system with specified inflows at all locations (control points) during each interval, specified system characteristics and specified operation rules (Beard, 1972). It is quite common today to find simulation models with one or more optimization routines to perform certain degrees of optimization. Eichert (1979) pointed out that from the practitioner's point of view, mathematical programming techniques have, thus far, not proven to be widely useful because of the complexities of water resources systems and noncommensurable objectives in water resources management. In this regard, simulation is an effective tool for studying the operation of the complex water resource system incorporating the experience and judgement of the planner or engineer into the model. It would be desirable if the simulation model had some degree of self-optimization to reduce the amount of computation to obtain an optimum or near optimum operation plan for a complex reservoir system.

Several system formulation strategies were described by Eichert and Davis (1976) that use system analysis techniques to select the optimal plan from simulation model results. Since seldom will the optimum economic system be selected as best, an acceptable strategy need not make the absolute guarantee of economic optimum. The formulation strategies described are: the reasoned thought strategy where reasonable alternative systems are "reasoned" out by judgement and other criteria; the first added strategy and the last added strategy. The strategy recommended is an incremental first-added approach; that is, each new component of the proposed system is added to the existing base system and simulated without any of the other proposed components. The size of each new component is varied to determine the most cost-effective size within its constraints. The most cost-effective component is then selected for inclusion in the system, thus creating a new base system. The procedure is then repeated with the remaining candidate components analyzed in the first-added manner. The most cost-effective project is again selected and the procedure continues. Although this process does not evaluate the benefits of all combinations of projects, it results in the best incrementally justified system.

Another approach (a last-added strategy) is recommended as a means of analyzing a proposed system in which all components are assumed to be justified. The last-added strategy begins with all previously selected projects which had positive net benefits included in the plan and the system is simulated deleting one component at a time. The component which causes the net benefits to increase the most is then removed from the system. The procedure is continued until the removal of a project causes a decrease in net benefits. This strategy operated independently of the first-added approach has a drawback in that the group of projects may include components that are not incrementally justified. In all cases the system performance is assumed to be evaluated by traditional methods that make use of HEC-5 (HEC, 1985). Each of these strategies was shown to have one or more shortcomings.

3.1.5 Simulation Using HEC Programs

The Hydrologic Engineering Center has developed a package of hydrologic and economic computer programs which provide flood damage analysis for an entire range of structural and nonstructural flood plain management measures. The Flood Damage Analysis Package (HEC,1986), presently includes three computer programs to provide hydrologic and hydraulic analyses, three programs for flood damage economic evaluation, the HEC Data Storage System (HEC, 1983) for efficient manipulation and transfer of data and three programs to aid in input data preparation and data editing. Table 1 lists some typical flood-damage-mitigation measures and associated programs used for evaluation of the modifications due to each.

Table 1

HEC programs for Evaluation of Flood-Damage-Mitigation Measures

(Taken from Training Document No. 23, HEC, 1986)

Function Modified		
Stage-Damage	Flow-Frequency	
no change	HEC-1,HEC-5	
SID, DAMCAL	HEC-1,HEC-51	
no change	HEC-1,HEC-51	
no change	HEC-1,HEC-5	
no change	HEC-1,HEC-5 ²	
SID, DAMCAL	no change	
SID, DAMCAL	no change	
SID, DAMCAL	no change	
SID, DAMCAL	HEC-1,HEC-5	
	no change SID, DAMCAL no change no change no change SID,DAMCAL SID,DAMCAL SID,DAMCAL	

3.1.5.1 Hydrologic/Hydraulic Analysis Computer Programs

HEC-1 Flood Hydrograph Package

The main purpose of the HEC-1 Flood Hydrograph Package (HEC, 1985) is to simulate the hydrologic processes during flood events. The Corps of Engineers uses this model as a basic tool for determining runoff from various historical and synthetic (design) storms in

¹Due to potential loss of floodplain storage

²Due to improved reservoir operation with forecast

planning flood control measures. HEC-1 has several major capabilities which are used in the analysis of flood control measures. Those capabilities include the following:

- 1. Computation of modified frequency curves and expected annual damages for any location in the stream system.
- Computation of modified frequency curves and expected annual damages for a number of different plans in the watershed in a single computer run (multiplan option).
- Optimization of flood control system components (levee, reservoir, pump, or diversion).

HEC-1 aids in flood control planning analysis in two ways. First, given a set of measures constituting a plan, the program can determine the optimal size of each of the components based on maximizing net benefits. Second, given a number of discrete plans, the hydrologic impact of each flood control scheme can be computed in a single run.

The main purpose of HEC-1 for use in flood-damage analysis is to develop existing condition and modified condition flow-frequency curves for input to the branch-and-bound program. Although HEC-1 includes detention structures as a flood control measure, the program does not simulate the operation of reservoirs. There is currently no provision in HEC-1 to select the combination of measures at sites to yield the optimal flood control plan.

HEC-2 Water Surface Profiles

HEC-2 (HEC, 1982) computes steady-state, gradually varied flow water surface profiles for specified flows in natural or man-made channels. In flood analyses studies, it is used to develop stage-flow rating curves. The principal use of the HEC-2 program has been in determining inundated areas associated with various flood flows. The simulated area and depth information is used by the Corps to evaluate flood damages. HEC-2 can analyze the impact of channel improvements and levees on water surface elevations through flood prone areas. The modified stage-flow functions can be written to the DSS file during an HEC-2 run where it can later be combined with the stage-damage and flow-frequency functions in EAD. The expected annual damage reduction resulting from a channel improvement can thus be computed.

HEC-5 Simulation of Flood Control and Conservation Systems

The HEC-5 program (HEC, 1982) was designed to simulate the operation of multipurpose water resource systems consisting of reservoirs, points of demands or controls (control points), and interconnecting channels. HEC-5 is the basic simulation model used with the branch-and-bound optimization routine. It is used to simulate complex systems of reservoirs to meet numerous flood control, water supply, hydropower, and instream requirements. Operation is accomplished by specifying demands at the reservoir and at any downstream control points desired. The flood control capabilities include analysis of structural and nonstructural measures formulated to reduce flood damages (Eichert, 1985). The structural aspects of flood control modeled by HEC-5 include reservoirs, levees, diversions, and channel improvements which reduce the river flood flow rates and/or stages. Nonstructural measures are those which are designed to protect specific properties such as raising a structure, flood proofing, flood forecasting, and removal of damageable property.

Nonstructural measures are represented in HEC-5 by changes in the flow- or stage-damage relationship.

Expected annual damages can also be computed by HEC-5, as with HEC-1. When costs of proposed reservoirs and channel improvements are given, the net benefit for a given plan can be computed with HEC-5.

The investigation of flood control system components with HEC-5 is done on a trial-and-error basis. For each alternative plan, the system is simulated with HEC-5, and the system net benefits compared. There is currently no algorithm within HEC-5 to determine automatically the optimal combination of components. However, the systematic methodology described previously in Section 3.1.4, can greatly decrease the number of trials for systems of more than a few components.

3.1.5.2 Flood Damage Analysis Programs

EAD (Expected Annual Damage Computation)

The EAD program was developed to assist in the economic analysis (specifically, damage reduction), of flood-damage-mitigation plans. This program is based on the principle that flood damage to an individual structure, group of structures of floodplain reach can be estimated by determining the dollar value of flood damage for different magnitudes of flooding and by estimating the percent chance exceedence of each flood magnitude. Damage may be computed by: (1) evaluation of damage associated with a specific event; (2) expected annual damage values associated with a specific year or several selected years, and (3) the equivalent annual flood damage associated with a specific discount rate and period of analysis. The concept of "equivalent annual value" allows direct comparison of alternative plans or comparison of damages with costs. The equivalent annual value represents a uniform distribution (the same each year) of annual values and is computed by discounting and amortizing each year's expected annual damage value over a period of analysis. The discounting and amortization takes into account the time value of money associated with damage values.

The input data for EAD consists of floodplain management plans, damage reaches, damage categories, flow-frequency or stage-frequency relationships, rating curves, stage-damage relationships, year identification of the input damage and/or costs and identification of base condition years. Computations are based on inputs of hydrologic (flow-frequency), hydraulic (stage-flow), and flood damage (stage-damage) data associated with each damage category and reach. HEC-1, HEC-2, HEC-5, DAMCAL and SID programs provide various aspects of this information.

The principal reason for computing flood damage is to determine the effectiveness of different flood damage mitigation plans in reducing damage. This reduction is commonly referred to as an inundation reduction benefit and is measured as the difference in equivalent annual flood damage with and without a plan. Different flood-damage-mitigation plans alter the stage, flow frequency and/or damage relationships in different ways. For any plan which causes a change which can be quantified, damage with the plan can be computed and damage reduction benefits between alternative plans can be compared.

DAMCAL (Damage Reach Stage-Damage Calculation)

The DAMCAL program (HEC, 1979) computes the stage-damage relationship for specified segments of the floodplain called damage reaches. The stage-damage relationships are then used by other programs (HEC-1, HEC-5, and EAD) to compute flood damages for

specific events and on an expected annual basis. Nonstructural measures such as land use control, flood proofing and raising structures can be evaluated with DAMCAL.

SID (Structure Inventory for Damage Analysis).

The SID program (HEC, 1982) processes inventories of structures located in the floodplain. Its primary use is to develop stage-damage relationships. The SIDEDT program (HEC, 1982) is used to edit structure inventory and damage function files used for the SID program.

3.1.5.3 Data Management Programs (DSS, DSSUTL, DSPLAY, and PIP)

HECDSS (HEC, 1985) was developed by the HEC to store time series and paired function data. DSS is a collection of subroutines that can be called by application programs (such as HEC-5 or EAD). The programs retrieve from the DSS software or pass to the DSS software various data and associated descriptors. The DSS program can then access a file and either retrieve or store data in that file. In addition to the applications programs, a family of utility programs (DSPLAY, DSSUTL, and PIP) can be used to access the data and perform various functions, such as tabulation or plotting data. Appendix A contains a more detailed description of the Data Storage System.

3.2 Branch-and-Bound Applications in Water Resources Planning

The general features of branch-and-bound methods and applications have been presented in the management-science and operations-research literature. Mitten (1970) describes a general theoretical framework for branch-and-bound methods and formulates, in general terms, the conditions for the branching and bounding functions. The concepts developed are illustrated in an application to discrete programming. Discrete programming, which includes integer programming, combinatorial optimization problems and others, has provided much of the impetus, Mitten observes, for the development of branch-and-bound methods. Lawler and Wood (1966) present a survey of branch-and-bound methods and describe specific applications to integer programming, nonlinear programming, the traveling-salesman problem, and the quadratic assignment problem and to non-mathematical programming problems.

Applications of branch-and-bound methods in water resources planning have been concerned with problems of selecting, sizing, sequencing and scheduling projects. Brill and Nakamura (1978, 1979) present a branch-and-bound method to generate systematically attractive alternative plans for regional wastewater treatment systems and to evaluate economic trade-offs among alternative plans. This single objective branch-and-bound method proposed by Brill and Nakamura was extended by Nakamura and Riley (1981) to include analysis of multi-objective fixed charge network flow problems which are commonly found in water resources planning situations. The method was applied to the problem of locating and sizing of a regional wastewater treatment system. A FORTRAN program was used to analyze the example problem. Morin (1975) suggested the use of implicit enumeration by branch-and-bound algorithms for the solution of the combinatorial optimization problems of project sequencing encountered in the planning of large scale water resources systems. The work of Harris (1970) describes how general planning processes can be viewed in terms of branch-and-bound processes.

Windsor (1975) presents a methodology using mixed integer programming as the optimization tool for the planning and design of multi-reservoir flood control systems. His programming model allows variation in reservoir location, capacity and operating policy in selecting a cost-effective flood control system. He assumes that the reservoir release in any time period is limited only by the spillway capacity. In situations in which the flow is uncontrolled, that is, dependent only upon the current storage volume, the addition of rather complex piecewise linear constraints is required. Other significant limitations of this work are the consideration of only single-purpose reservoirs as the flood control measures.

Nonstructural floodplain alternatives, such as zoning plans, were examined as flood damage reduction measures by Bialas and Loucks (1978). A general nonlinear mathematical programming model is proposed as an analytical screening technique. The technique identifies those plans most worthy of a more detailed analysis using more precise simulation models. This preliminary evaluation of alternative floodplain zoning policies was shown as an example problem to illustrate some of the features of the model. The management (model) objective described was the maximization of location rent derived from land use allocations minus the annual expected flood damage and the annualized relocation costs. The model assumes a relationship between the probabilities that specified areas in the river basin are flooded and the cost of structures that achieve these probabilities.

Ball, Bialas, and Loucks (1978) propose a branch-and-bound optimization routine to evaluate alternative capacities and locations of various flood control structures required to protect a floodplain from a specified design flood. The algorithm is used to estimate the least-cost solution required to protect specified land areas from a specified flood event. A broad range of structural flood control options is allowed as well as almost any reasonable reservoir operating policy.

Ford (1986) describes a branch-and-bound procedure for selecting the optimal combination of flood-damage-mitigation measures and illustrates how the HEC programs can be used in the analysis. To account for the risk of a range of flood events, a statistical analysis technique in the form of expected value analysis is used to compute the net benefit of any specified flood-damage-mitigation plan. The objective function is stated as:

Maximize net benefit =
$$E[DB] - E[DP(P)] + E[OB(P)] - E[C(P)]$$
 (Equation 1)

in which E[] denotes the expected value of the argument; DB = base condition total-catchment inundation damages; DP(P) = total catchment inundation damages with plan P implemented; OB(P) = total cost of plan P. The goal of plan formulation is to identify the plan P, which yields the maximum value to the objective function.

The procedure presented subsequently in this paper is based on that work, with modifications to the algorithm to analyze various reservoir operating policies and storage allocation trade-offs between flood control and water supply purposes. The algorithm constitutes the basis of the branch-and-bound program.

3.3 Branch-and-Bound General Description

Branch-and-bound methods are enumerative schemes for solving optimization problems while only a fraction of the solutions are explicitly enumerated. In the water resources planning field, many alternatives are commonly proposed to solve a specific problem. To analyze each alternative is costly in both time and money. Branch-and-bound methods eliminate the need to identify every possible solution. This is accomplished through two basic operations:

- 1. Branching, or dividing the entire set of solutions into subsets, and
- 2. Bounding, which consists of establishing the upper bound on the value of the net benefit achievable with any subset plans defined in the branching procedure. The subset bound is a partial objective function which includes only the costs and benefits down to the last site in the subset, subtracted from base condition damages for all sites. An upper limit on all plans which include those measures is thus established.

Branch-and-bound enumeration is particularly applicable to the problem of identifying the optimal flood control plan for several other reasons. The first reason as previously mentioned is that the great number of alternative plans possible in a very complex or large system is costly and time-consuming to analyze. Branch-and-bound enumeration systematically analyzes combinations of measures and eliminates the need to analyze each possible plan. In many flood control planning situations, it may not even be clear what combination of measures exist. Secondly, flood control planning typically involves discrete decision variables and plan selection between discrete alternatives for which finding an optimal solution are similar to those of integer programming procedures. Branch-and-bound algorithms are a general class of methods of finding an optimum of a very large number of discrete points (or alternative plans). Third, planning intrinsically involves interaction of decision variables. In multi-site water resources development, sets of measures are generally either mutually reinforcing or mutually incompatible. Branch-and-bound efficiently eliminates entire subsets which are shown to be infeasible, or incompatible with other proposed measures. A fourth very useful feature of branchingand-bounding is the opportunity to compute solutions that differ from the optimum by no more than a prescribed amount. "Heuristic programming" in general terms, refers to systematic search procedures which are not guaranteed to find an optimum. The objective in constructing a heuristic procedure is to achieve an optimal balance between the savings in the cost of the search and the closeness of the approach to optimality. Branch-and-bound enumeration is a mathematical programming procedure which, in sufficient time, guarantees a global optimal solution. However, because the general procedure does not specify a good means for solving any particular problem, an understanding of the problem itself is required. Suppose for example, it is decided at the beginning that a feasible solution whose net benefit is no more than 10 percent less than that of the optimal solution would be acceptable. Then, if a feasible solution is found with net benefits of 100, all plans with bounds of 90 or less can be eliminated $(1.10 \times 90 = 99 < 100)$. The utility of this feature in flood control planning studies is as a screening rather than selection tool. More detailed hydrologic and hydraulic analysis may be performed on those plans passing the screening, then the branch-and-bound procedure may be used to identify the optimal plan.

Sometimes, other aspects of a flood-damage-mitigation plan, such as environmental or social requirements, must be considered along with the economic objective in final plan selection. A fifth feature of the branch-and-bound procedure is the ability to express these other considerations as constraints in the plan formulation problem. Constraints which are quantifiable but do not create an infeasible plan, can be treated analytically in the branch-and-bound algorithm by imposing a penalty on the net benefit (by either increasing the cost or reducing the damage reduction benefit). Constraints which must always be satisfied can be treated by assigning a very high cost to all plans which violate that constraint, thus insuring no such plan will be selected.

3.4 Branch-and-Bound Procedure

A step-by-step procedure for identifying the optimal flood-damage-mitigation plan is given by Ford (1986). The procedure begins by dividing the set of all possible plans into mutually-exclusive subsets for evaluation. Subdivision is made on the basis of project site, beginning at the most upstream site in the drainage basin and proceeding downstream. A site is defined in this context as a location at

which alternative flood-damage-reduction measures have been proposed for implementation. These measures are mutually exclusive, that is, one and only one of the proposed alternative measures will be selected at each site to constitute the optimal plan. A damage center must be located downstream of each site to permit evaluation of incremental benefits with the EAD program. However, the branch-and-bound algorithm passes only information about those sites with damage locations to EAD for economic analysis. Thus, sites with no associated downstream damages may be included in the HEC-5 system simulation. The EAD input file will contain only those sites with damage centers.

In the branch-and-bound process, subsets are divided as needed until the optimal plan is identified. The objective function as stated in equation 1 is used to compute the net benefit of any plan in the branch-and-bound procedure. In equation 1, E[DB] is the expected value of the base condition damages for all sites in the basin. The expected value of damage with plan P implemented is also called the residual damage term, E[DP(P)]. This term includes the damage reduction for all measures acting individually and synergistically (as a system). The benefit term, OB(P) also includes individual cost of measures plus any additional cost required to implement the plan as a system.

Equation 1 is also used to compute the upper bound of the net benefit achievable with any subset of plans defined in the branching procedure. The subset bound is a partial objective function which includes only the costs and benefits of measures known with certainty to be in the subset. These costs and benefits are summed down to the last site in the subset and are subtracted from the base condition damages for all sites, thus becoming an upper limit possible on all plans which include those measures. Any measure included for sites further downstream will always reduce this total.

Computation of the bound allows elimination of subsets that cannot possibly include the optimal plan. This is the goal of the branch-and-bound procedure. If a subset bound is less than the net benefit achievable with any trial optimum plan, the subset cannot contain a better plan. The value of the subset bound cannot increase as the subset is further divided so the bound (net benefit) cannot increase. This subset can then be eliminated and another considered. Another feature of the branch-and-bound method is that of backtracking. The algorithm uses a simple backtracking procedure to explore new solutions. In the backtracking step, the next option at the previous site is reconsidered when all measures have been analyzed at a downstream site. The efficiency of backtracking enables partial solutions to be generated and evaluated very quickly.

The step-by-step procedure is shown schematically in Figure 2 and described in the following paragraphs.

- a. Initialize. The first step is to set the initial trial optimum as -999. For evaluation of the subset bound, set a site pointer S=1.
- b. Evaluate Objective Function. The objective function is then computed for the status quo plan (the status quo plan is the first measure at each site.)
- c. Compare. If the trial optimum exceeds the objective function, evaluate the subset bound (step d) If not, a better plan is identified. Set the new trial objective function to this plan's trial optimum and evaluate the subset bound (step d).
- d. Evaluate Subset Bound. Compute the subset bound for site S. If the trial optimum is greater than the subset bound, eliminate this subset, then modify plan (step e). If the trial optimum is greater than the subset bound, consider the next downstream site (set S=S+1). If this is the last site modify plan (step e). If this is not the last site, evaluate the subset bound again. Continue this process until the trial optimum is greater than the current subset bound or the last site in the system has been reached.

- e. **Modify Plan**. If all measures for site S have been considered, begin backtrack procedure (step f) If all measures have not been considered, replace current measure for site S with the next measure and check for complete plan (step g).
- f. Backtrack. Eliminate measure for site S. Move back upstream (set S=S-1).
 If S=0, terminate. If S=0, modify plan (step e).
- g. Check for Complete Plan. If plan is complete, evaluate system constraints (step h). If plan is not complete, go to the next site and add the first measure. Continue until a complete plan is formulated.
- h. **Evaluate Constraints**. If system requirements are satisfied, evaluate the objective function (step b). If not, modify plan (step e).

The entire process is repeated to identify the optimal flood-damage-mitigation plan. The number of iterations depends upon the number of sites in the system, the number of proposed measures at each site and the order in which the alternative measures are evaluated. In most cases, the procedure requires evaluation of only a fraction of the total number of possible plans.

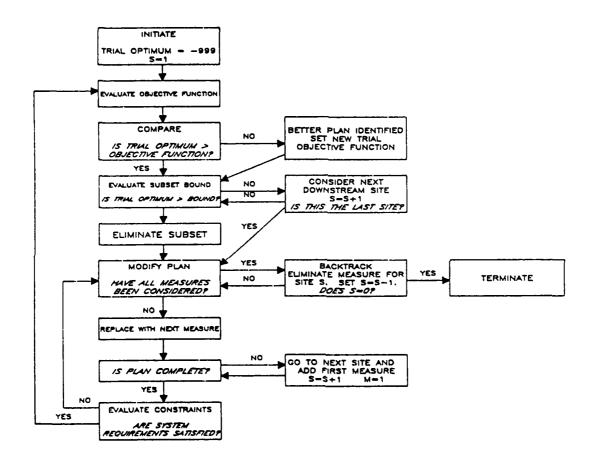


Figure 2
Branch-and-Bound Algorithm

Plan Selection Using the Branch-and-Bound Algorithm in Conjunction with HEC-5 and EAD

4.1 General Approach

The general approach taken is to identify the optimal flood-damage-mitigation plan using the branch-and-bound procedure in conjunction with HEC programs required to perform the hydrologic, hydraulic and economic analysis of the measures. For efficiency, data are transferred between programs through DSS files. A schematic showing the link between existing HEC programs, new routines, and input data files is given on Figure 3.

Several computer software components were developed to accomplish the branch-and-bound plan selection. The new routines were developed on a Harris 1000 virtual memory minicomputer with 2 megabytes of memory. The software was written in ANSI standard FORTRAN 77. The branch-and-bound program requires that HEC-5, EAD, DSS and any other programs used to input data into the DSS file should all exist on a single computer system so that programs and files can be called by the branch-and-bound routine in a straightforward manner. The programs must be the proper versions; they must contain the DSS system software calls to be able to write and read data from the DSS files. The EAD version must be at least September 1986, when capabilities were added to allow data to be written to a DSS file and to allow all six types of paired data to be read from a DSS file.

Three primary HEC programs are used. Their functions in the branch-and-bound procedure are the following:

- 1. HEC-5 is the basic model used to describe existing conditions in the basin and the hydrologic and economic parameters of all the proposed measures at each of the sites. Input to the branch-and-bound program is based on the standard HEC-5 input, with two additional records needed to delineate proposed measures. The branch-and-bound main routine controls the measures that are included in the input data at any one time. HEC-5 is used to compute the flow hydrographs throughout a basin for plans in which reservoirs modify the flood, thus yielding information required to develop a flow-frequency function for modified conditions. Existing condition flow-frequency functions can be derived using various techniques. Typically, a statistical analysis is performed on historic streamflow records to determine the exceedence-frequency of various magnitudes of annual peak flow. These existing condition flow-frequency functions are also written to the DSS file for later use with EAD. HEC-5 is called by the main routine to compute the modified relationship for every plan in which a reservoir or diversion is proposed or operation criteria changed at an existing reservoir in the basin. Damage data corresponding to flows is written from the HEC-5 input format into the DSS file and used by EAD in the economic analysis.
- 2. EAD is used to compute the expected annual damage for both base condition damages and damages with each proposed plan in effect. A base condition EAD input file is created which accesses base condition flow-frequency data already in the DSS file (written by HEC-5). The main routine controls the measures in the current plan and the corresponding relationships, which are modified as a result of the plan. Net benefits of the plan are then

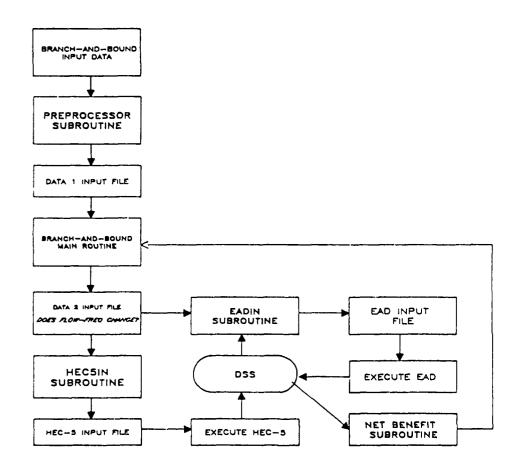


Figure 3
Branch-and-Bound Link to Other Programs

computed in subroutine NETBEN by subtracting costs of all measures included in the plan from the inundation reduction benefit (equation 1). Subset bounds are computed in a similar fashion; however, only costs and benefits sure to be in the subset are included in equation 1.

This process of generating an EAD input file, computing the net benefit, comparing to the trial optimum in the branch-and-bound algorithm and generating a new plan and EAD input file continues until an optimal plan is identified.

 The Data Storage System (DSS) is the data exchange link between other HEC programs used to analyze various aspects of the flooding problem. DSS path-naming conventions are described in detail in Appendix A.

The HEC-5 program accepts and uses flow-frequency and flow-damage functions. Base conditions which can be given in terms of these two relationships will be read from the master input data file and written to the DSS file with the appropriate site identifier in the B-part, "BASE" as the E-part, and the appropriate type of data in the C-part. If other functions are required to describe base conditions, these must be entered into the DSS file via another means prior to program execution. Measures which alter other than the flow-frequency function must also be previously entered into the DSS file.

Several additional HEC programs may be used to perform hydrologic and hydraulic analyses required by certain measures. The computed modified function is stored in the DSS file. The pathname identifies these data by site, measure, and data type. The following programs may be used to enter this data:

HEC-1 can be used instead of HEC-5 to define the flow-frequency function at locations in a basin for either existing or modified conditions. HEC-2 can be used to derive the stage-flow function at a location on a stream. If a measure modifies the stage-flow function and base conditions were described by flow-frequency and flow-damage relationships, the stage-damage function must also be given for this measure in order to derive the damage-frequency relationship. SID can be used to evaluate measures that modify damage susceptibility or can be used to represent existing conditions when required. PIP can be used to enter any of the six possible paired functions directly from a keyboard into a DSS file.

4.2 Results

In order to verify the results of the program, a problem with a known "true" solution is used to test the model. A data input file was prepared of the hypothetical Loucks Creek example (Ford, 1986) which is a step-by-step hand solution of the branch-and-bound procedure at a two site system. Computer model results were the same as obtained by the hand calculations.

Program output consists of a summary of the sites and measures in the system and an economic summary of the optimal plan. Intermediate results explaining the branch-and-bound process and an economic summary of all plans enumerated can also be requested. This is useful for verification of the procedure and also as an aid to determining other potentially feasible plans should the optimal plan not be selected. It should be noted that the plan yielding the second highest net economic benefit is not necessarily the second best plan. If the plan selected as the optimal plan by the branch-and bound procedure is found to unacceptable for non-economic reasons, the measure which made it unacceptable should be assigned a high cost and the branch-and-bound procedure

performed again. The branching process in the recalculation may be different causing plans not previously analyzed to be enumerated and as a result a new optimal plan may be determined which was not originally the second best.

EAD and HEC-5 input files which have been saved for the optimal plan and may be executed again using standard EAD and HEC-5 job control language in order to obtain output from these programs.

4.3 Theoretical Assumptions and Limitations

A basic assumption in the branch-and-bound procedure is that the plan selected is the plan that yields the maximum net economic benefit. This single objective is consistent with the Water Resources Council's Principles and Guidelines which established the single objective in flood control plan selection as the national economic objective.

Flood-damage-reduction is considered the single purpose for all measures proposed with the exception of reservoir alternatives. Water supply purposes can be evaluated as a trade-off with flood control by adjusting both the reservoir storage level and value of water in conservation storage. For example, suppose an existing reservoir with 100 units of flood control storage would yield a flood damage reduction of x dollars. If 50 units were to be allocated to conservation storage, the flood damage reduction benefit would decrease but an additional benefit amount would accrue to the water supply yield. This can be accounted for by adjusting either the cost or benefit amount. The branch-and-bound algorithm can efficiently perform such an analysis.

As currently written, the branch-and-bound routine recognizes only one damage category.

Sizes of all proposed measures and potential operating rules at reservoir sites considered in the basin are assumed to be known or previously determined. Selection is thus made on these discrete alternative sizes and capacity optimization in-between any of these input sizes is not a capability of the program. As previously discussed, in practice, determination of final sizing of measures or final reservoir operating rules is generally a problem of selection of best of discrete alternatives.

Example Problem Solution

5.1 Description of Basin Flooding Problem

The system used to demonstrate the branch-and-bound program is based on the Fall River System as described by Johnson and Davis (1975). An HEC-5 model of the Fall River System (Figure 4) is presented as HEC-5 Standard Test 10 (HEC, 1982). In its natural (unregulated) condition, flooding caused extensive flood damages in the vicinity of control point 4. To reduce damages, two reservoirs have been constructed in the basin at control points 1 and 2. Although they have been effective in reducing damages, flooding still occurs and an array of measures are being investigated to help reduce the remaining flood hazard.

A major storm which occurred 5-10 June 1952 was selected from hydrologic records to be representative of major flood events. Local inflows to the river resulting from this storm were computed at five control points (see Figure 4), using unit hydrograph techniques. The base hydrograph in the simulation was computed using average inflows for 6-hour time periods at control points 1-4. The base condition flow-frequency relationships for control point 4 were developed from hydrologic studies (Johnson and Davis, 1975). The effect of reservoir regulation on the basic curves used to compute flood damages is to modify the flow-frequency curve at all downstream control points. These modified flow-frequency functions are computed in HEC-5 using results from five simulations for a range of selected flood ratios.

The Fall River System was expanded using hypothetical data to include a second damage center and more reservoir alternatives to better illustrate the effectiveness of the algorithm. Hypothetical cost data was also added to allow computation of the net benefits of various plans. The modified Fall River System, shown in Figure 5, consists of three reservoir sites, a proposed channel improvement site and two damage centers. It is assumed that there are currently no controls in the basin and the sizes and costs of all proposed measures are given. The proposed reservoirs at site 1 and site 2 are for flood control only. A damage center is downstream of site 1, and damage reduction here is due to the measure at site 1 only. The proposed reservoir at site 3 is analyzed using two different reservoir operation policies. The total active storage of 800,000 acre-ft will be allocated in the first alternative strictly to flood control, and in the second alternative, 300,000 acre-ft will be allocated to flood control and the remaining 500,000 acre-ft to water supply. A constant diversion requirement of 5000 cfs is placed on the reservoir to cause the reservoir to drawdown in the conservation pool. In HEC-5, reservoirs are operated to meet specified constraints throughout the system, i.e., channel capacities for flood control or minimum flow requirements for water supply. The operation (release) in any particular time period depends not only upon these constraints but also on the current reservoir level. Each reservoir is given storage values for "target levels". A target level is defined as a level which specifies the allocation of storage for flood control and conservation purposes. In this example, the reservoirs have been partitioned into four levels. Level 1 is defined as the top of the inactive pool. The zone below this level is the dead storage zone, and releases cannot be made from this pool. Level 2 is the top of conservation storage. Below this level releases are made to satisfy minimum instream and diversion (water supply) requirements. If no conservation demands are made on the reservoir, releases are made to keep the reservoir exactly at the top of conservation pool. Level 3 is the top of the flood pool, and level 4 is the top of the dam. When the level of the reservoir is between 2 and 3. releases are made to attempt to draw the reservoir to the top of the conservation pool without exceeding the designated channel capacity at either the reservoir or downstream control points. The

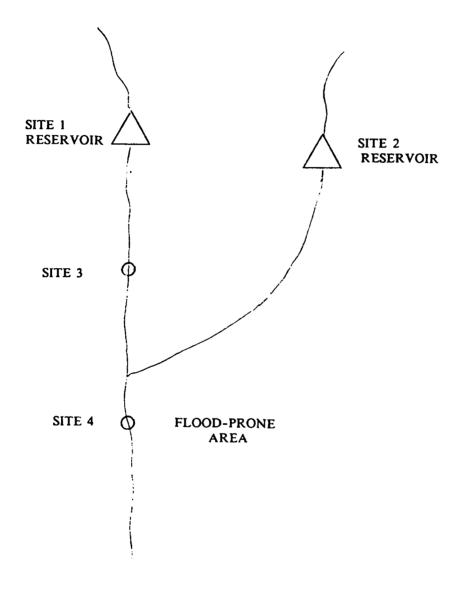
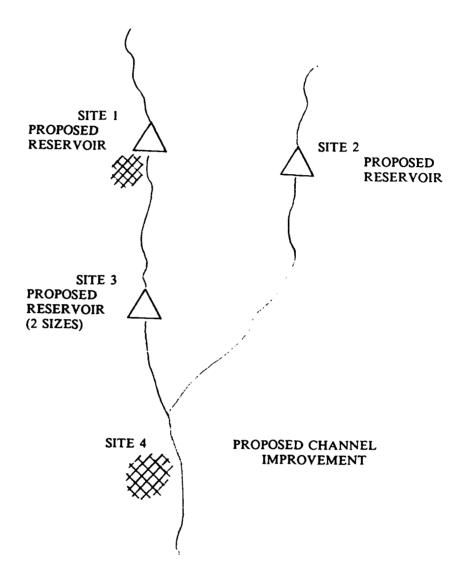



Figure 4
Fall River Existing System

Key: = damage locations

Figure 5
Fall River Basin Modified System Schematic

reservoir goes into emergency operation when the pool is above level 4. The trade-offs between water supply and flood control storage can be seen only when both a flood control channel capacity and conservation demand is given.

The cost of the reservoir at site 3 is assumed to be the cost apportioned to flood control only. The cost of one acre-ft of flood storage is assumed to be 1 unit. Therefore the alternative with 800,000 acre-ft of flood storage costs 800,000 units and the 300,000 acre-ft alternative 300,000 units. The remaining storage allocated to water supply is to be paid for by water supply benefits and is not analyzed in this model.

The final site in the basin at which a flood-damage reduction measure is proposed is site 4. Site 4 may be defined as the most downstream reach in which the channel is to be improved or status quo maintained. The damage reduction downstream of site 4 is due to the combined action of all measures at sites 1, 2, 3 and 4.

5.2 Simulation/Optimization Results

Branch-and bound output for the Fall River System is shown in Appendix D. Results of the simulation/optimization show that the optimal plan consists of status quo (measure 1) at site 1, the reservoir (measure 2) at site 2, reservoir alternative B (measure 3) at site 3 and the channel improvement (measure 2) at site 4. Expected annual damages of the existing system (status quo at all sites) are 2247¹, and with the proposed plan implemented, 732. The total annual cost is 725 for a system net benefit of 790. The optimal plan is shown to significantly reduce damages at site 4 through measures at sites 2, 3, and 4. The reservoir proposed at site 1 is shown to be economically infeasible in reducing damages at sites 1 and 4. Damages downstream of site 1 are only affected by the measure at site 1 and are therefore not impacted by the selected plan.

5.3 Effectiveness of Algorithm

During the branch-and-bound evaluation, the set of flood-damage-mitigation plans is subdivided based on the site at which the various measures are grouped. Beginning at the most upstream site, the set of all plans is initially divided into the following subsets (first level subdivision):

- 1. A subset that includes all plans with the status quo (measure 1) for site 1; and
- 2. A subset that includes all plans with the reservoir (measure 2) for site 1.

This subdivision of plans is shown conceptually in Figure 6. These two subsets are divided further as needed until the optimal plan is identified. For example, the subset that includes plans with status quo for site 1 is divided into a second level with the following subsets:

- 1. A subset that includes plans with status quo for site 1 and status quo for site 2; and
- 2. A subset that includes plans with status quo for site 1 and a reservoir for site 2.

At the second level, the partial objective function of equation 1 is called a subset bound. Each subset at the level 2 subdivision is divided into three subsets for each of the three alternatives

¹All costs and benefits in 1000 units.

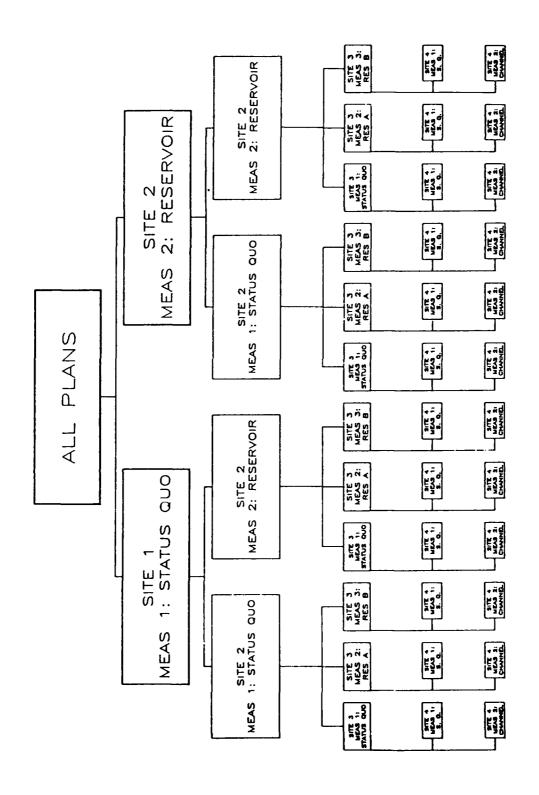


Figure 6
Subdivision of Plans for Fall River System

proposed at site 3 in a similar fashion. The fourth and last subdivision of subsets at level 3 occurs at the last site (site 4). It is at this level that subsets become plans. When each site is assigned one measure, complete plans are formulated and an objective function is evaluated.

Figure 7 illustrates the branching-and-bounding process for the Fall River example. The branching operation can be followed by the solid lines. Equation 1 is used to estimate the upper bound on the net benefit possible with any subset of plans defined in the branching operation. Only those costs and benefits of measures that are known with certainty to be in the subset are included in the subset bound. When a subset bound evaluated is less than the trial optimum, the entire subset can be eliminated from further consideration. For example, the subset bound for all plans including status quo (measure 1) for site 1, reservoir (measure 2) for site 2 and status quo (measure 1) for site 3 is 328, which is less than the current trial optimum of 710. The value of this subset bound cannot increase because all additional terms in equation 1, regardless of the measure selected at site 4, will always reduce the total. This subset is thus eliminated. The next subset including status quo (measure 1) at site 1, reservoir (measure 2) at site 2 and reservoir alternative A (measure 2) at site 3 is considered.

In this fashion, two other subsets are also eliminated, reducing the number of plans enumerated from a total possible of 24 to 16. For this example, the algorithm savings, or efficiency, is 33% (24-16/24).

5.4 Sensitivity Analysis

The efficiency of the branch-and-bound technique is sensitive not only to the feasibility of the individual measures but also to the order in which they are evaluated. To demonstrate this, in the Fall River example, the reservoir alternatives at site 3 were evaluated in reverse order. The reservoir alternative B was entered into the data before reservoir alternative A. The output is shown in Appendix E. Figure 8 shows the new branching process.

The branch-and-bound process first deviates from the first run in plan 3 and is different in every plan where measure 2 or 3 at site 3 is included in the plan. The most significant finding is that the total number of plans enumerated is reduced from 16 to 15. The initial plan, plan 11, was eliminated from evaluation because the subset bound is less than the trial optimum. The optimal plan remains the same (plan 11 in run 1 and plan 9 in run 2). The value of the objective function also remains unchanged. The optimal plan is enumerated earlier in the process in run 2. Thus, the order of input of components at each site is important to the efficiency of the algorithm, but not to the final solution.

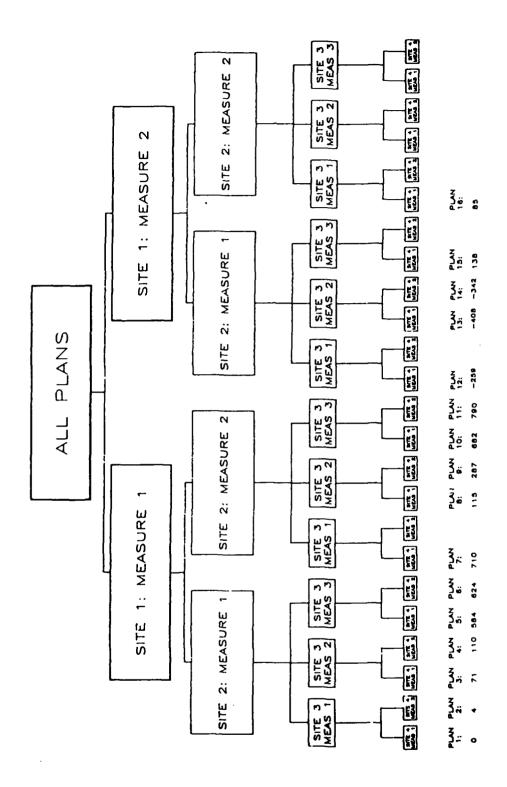


Figure 7
Branch-and-Bound Process for Fall River System

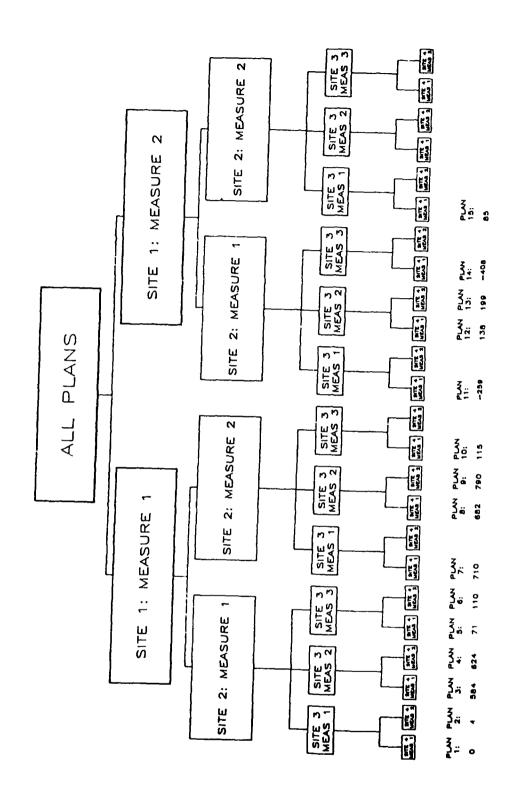


Figure 8
Branch-and-Bound Process for Sensitivity Example

Recommendations for Future Work

Future work related to the branch-and-bound program can be divided into three categories:

- 1. Extending the program to include new capabilities.
- 2. Linking the program to other hydrologic analysis programs (HEC-1).
- 3. Applying the procedure in new and creative ways to simulate more complex systems.

Some specific suggestion for work in each of these areas is described in the following paragraphs:

- 1. New Capabilities. The program should allow for damage to be subdivided into the different categories currently available in EAD, and extension of the economic analysis to include calculation of annual costs from capital costs for a variety of interest rates and time periods to make full use of the economic analysis available in EAD. In general, it is recommended that the program be expanded as needed to make use of the many options available in the simulation models used to analyze the individual plans.
- 2. Linking. With a few modifications to the preprocessor program, HEC-1 can replace HEC-5 as the base model. The main advantage to linking the branch-and-bound program to HEC-1 is to allow HEC-1 users to employ this capability in planning studies without having to learn to use a new program (HEC-5). HEC-1, EAD and DSS are currently available in microcomputer versions, and the branch-and-bound program could be easily converted. If the rainfall-runoff prediction is a significant part of the study, HEC-1 may be a more suitable model. HEC-1 does not provide for the operation of reservoirs, so HEC-5 should be used when reservoir alternatives are proposed as flood-damage-mitigation measures at any site.
- 3. Applying. With some thoughtful and innovative data input preparation, the branch-and-bound program is capable of analyzing and selecting between groups of measures. For example, a sub-system of reservoirs which might be proposed collectively as one measure can be grouped together into a single site. The entire set of all possible plans then, would include either the entire sub-system or none of it.

Other aspects of reservoir operation can also be included as alternative measures. The effect of seasonal operation criteria, of flow forecasting on reservoir operation and on instream low flow requirements can all be analyzed and evaluated using the branch-and-bound program. As with the example of multipurpose reservoir operation, creative manipulation of the cost might be required to evaluate the economic trade-offs.

Chapter 7

Conclusions

The goal of flood-damage-mitigation plan selection is to identify the optimal plan (the plan that yields the maximum economic benefit). Plan selection can be performed by two general approaches:

- Simulation models used to evaluate the economic impact of all possible plans, and comparison of results.
- 2. Optimization models.

Simulation models can quite accurately approximate the behavior of a system under various hydrologic and hydraulic conditions. Simulation enables a decision maker to examine the consequences of various scenarios of an existing or proposed system. In contrast, optimization models are mathematical programming techniques which find an optimum decision for system operation meeting all system constraints while maximizing or minimizing some objective. Many such techniques are proposed in the literature. The general programming techniques of LP and DP are the most common. Mathematical programming techniques have one or more of the following shortcomings:

- 1. They require assumptions on model structure and system constraints.
- 2. The hydrology and hydraulics of the system is often oversimplified.
- They ignore planning as it is done in the real world, that of deciding between discrete alternatives.

Simulation models also have the advantage of being widely used, easy to understand, and flexible enough to analyze the impact of most flood control systems. The big disadvantage is the need to simulate the impact of all possible combinations of alternatives.

The most desirable condition is to use an optimization technique to reduce the number of simulations. This work uses a branch-and-bound enumeration algorithm to systematically select the optimal plan while using simulation models to perform the hydrologic, hydraulic and economic analysis.

Branch-and-bound enumeration is particulary applicable to the problem of flood control plan selection for several reasons:

- Branch-and-bound enumeration systematically analyzes combinations of measures and identifies the optimal plan without having to analyze every possible combination of alternatives.
- 2. Branch-and-bound guarantees finding an optimum of a very large number of discrete alternatives, typical of flood control planning.

- 3. In multi-site water resources development, sets of measures are generally either mutually reinforcing or mutually incompatible. Branch-and-bound efficiently eliminates entire subsets which are shown to be infeasible or incompatible with other measures.
- 4. Branch-and bound offers the ability to screen selections that differ from the optimum by some prescribed amount.
- 5. Branch-and-bound allows consideration of other requirements of a flood-damage-mitigation plan as constraints by imposing a penalty on the plans that violate that constraint.

A computer model implementing the branch-and-bound algorithm was developed and linked to HEC simulation programs which perform the hydrologic, hydraulic and economic analyses. The model is developed in generalized form; thus it can be applied to most systems where flooding is occurring at one or more sites in the basin. Reservoir operation policies can also be analyzed in the context of reducing flood damages. The algorithm is shown to reduce the number of plans analyzed in a four-site system from a total possible of 24 to 16. The efficiency of the branch-and-bound algorithm is sensitive to the order in which measures are analyzed at each site. Further study to determine a method of analyzing the "best" alternative measure first, in the selection process, could improve the overall efficiency of the procedure.

The usefulness of the branch-and-bound program in conjunction with HEC-5 will be primarily to Corps districts involved in comprehensive watershed planning, especially for large or complex systems where a large number of alternative measures are proposed. Should the branch-and-bound program be implemented on a microcomputer, or linked to HEC-1, potential applications could be widespread.

References

Ball, Michael O., Wayne F. Bialas and Daniel P. Loucks, "Structural Flood Control Planning," Water Resources Research, Vol.14, No. 1, February 1978, pp.62-66.

Beard, Leo R., "Economic Evaluation of Reservoir System Accomplishments", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 9, May 1968.

Beard, Leo R. and Shin Chang, "Optimizing Flood Operation Rules", Center for Research in Water Resources, The University of Texas at Austin, 1979.

Becker, L., and W.W-G. Yeh, "Optimization of Real-Time Operation of Multiple-reservoir System", Water Resources Research, Vol.10, No.6, 1974, pp.1107-1112.

Bialas, Wayne F., and Daniel P. Loucks, "Nonstructural Floodplain Planning", Water Resources Research, Vol. 14, No. 1, February 1978, pp.67-74.

Brill, E. Downey Jr., and Masahisa Nakamura, 'A Branch and Bound Method for Use in Planning Regional Wastewater Treatment Systems', Water Resources Research, Vol. 14, No. 1, February 1978, pp.109-117.

Buras, N., *Dynamic Programming and Water Resources Development*, Advances in Hydroscience, Vol.3, 1966, pp.372-412.

Burnham, Michael W., *Engineering and Economic Considerations in Formulating Nonstructural Plans*, U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 103, January 1985.

Cohon, J.L., and D.H. Marks, "A Review and Evaluation of Multiobjective Programming Techniques", Water Resources Research, Vol. II, No. 2, 1975, pp. 208-220.

Dalgi, C. H. and J. F. Miles, 'Determining Operating Policies for a Water Resource System', Journal of Hydrology, Vol.47, No.34, 1980, pp.297-306.

Davis, Darryl, "Optimal Sizing of Urban Flood Control Systems", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 42, March 1974.

Dorfman, R., "Mathematical Models: The Multi-structure Approach", **Design of Water Resources Systems**, edited by A. Maass, Harvard University Press, Cambridge, Mass., 1962.

Duren, Fred K. and Leo R. Beard, "Optimizing Flood Control Allocation for a Multipurpose Reservoir", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 34, August 1972.

Eichert, Bill S., "Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 43, August 1975.

Eichert, Bill S., "HEC-5C, A Simulation Model for System Formulation and Evaluation", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 41, March 1974.

Eichert, Bill S., "Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems", U.S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 66, September 1979.

Eichert, Bill S., and Vernon R. Bonner, "HEC Contribution to Reservoir System Operation", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 63, August 1979.

Eichert, Bill S., and Darryl W. Davis, "Sizing Flood Control Reservoir Systems by Systems Analysis", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 44, March 1976.

Feldman, Arlen D. "HEC Models for Water Resources System Simulation :Theory and Experience", Advances in Hydroscience, Vol. 12, 1981.

Fitch, W. N., P.H. King and G. K. Young Jr., 'The Optimization of the Operation of Multi-purpose Water Resource Systems', Water Resources Bulletin, Vol.6, No.4, 1970, pp.498-518.

Ford, David T., "Interactive Nonstructural Flood Control Planning", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 68, June 1980.

Ford, David T. and Darryl W. Davis, "Hydrologic Engineering Center Planning Models", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 92, December 1983.

Haimes, Y. Y. Heirarchical Analysis of Water Resources Systems, McGraw-Hill, New York, 1977.

Hall, W. A., W. S. Butcher, and A. Esogbue, "Optimization of the Operations of a Multi-purpose Reservoir by Dynamic Programming", Water Resources Research, Vol.3, No.4, 1968, pp.471-477.

Hall, W. A., R. W. Shepard, "Optimum Operations of Planning of a Complex Water Resources System", Tech. Report. 122, Water Resources Center, School of Engineering and Applied Science, University of California, Los Angeles, October 1967.

Harris, Britton, "Planning as a Branch and Bound Process". Paper presented at Tenth European Regional Science Association Conference, London, August 25-28, 1970.

Johnson, William K. and Darryl W. Davis, "The Hydrologic Engineering Center Experience in Nonstructural Planning", U. S. Army Corps of Engineers Hydrologic Engineering Center, Technical Paper No. 96, February 1974.

Johnson, William K. and Darryl W. Davis, "Analysis of Structural and Nonstructural Flood Control Measures Using Computer Program HEC-5C", U. S. Army Corps of Engineers Hydrologic Engineering Center, Training Document No. 7, November 1975.

Lawler, E. L. and D. E. Wood, "Branch-and-Bound Methods: A Survey", Operations Research, Vol. 14, 1966, pp. 699-719.

Maass, A., et al. (Eds.), **Design of Water Resource Systems**, Harvard University Press, Cambridge, Mass., 1962.

Mitten, L. G., "Branch-and-Bound Methods: General Formulation and Properties", **Operations Research**, Vol. 18, 1970, pp. 24-34.

Morin, Thomas L., 'Solution of Some Combinatorial Optimization Problems Encountered in Water Resources Development', Engineering Optimization, Vol. 1, 1975, pp. 155-167.

Nakamura, Masahisa and E. Downey Brill, "Generation and Evaluation of Alternative Plans for Regional Wastewater Systems: An Imputed Value Method", Water Resources Research, Vol. 15, No. 4, August 1979, pp. 750-756.

Nakamura, Masahisa and James M. Riley, 'A Multiobjective Branch and Bound Method for Network-Structured Water Resources Planning Problems', Water Resources Research, Vol. 17, No. 5, October 1981, pp. 1349-1359.

- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Analytical Instruments for Formulating and Evaluating Nonstructural Measures", Technical Paper No. 16, January 1982.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Damage Reach Stage-Damage Calculation (DAMCAL) Program User's Manual", 1979.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Expected Annual Flood Damage Computation EAD, Program User's Manual", February 1984.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Flood Damage Analysis Package, Description, User's Guide and Example", January 1986.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Flood-Damage-Mitigation Plan Selection With Branch-and-Bound Enumeration", Training Document No. 23, U. S. Army Corps of Engineers Hydrologic Engineering Center, January 1986.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "HECDSS, User's Guide and Utility Program Manuals", 1983.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "HEC-1 Flood Hydrograph Package Program User's Manual", 1985.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "HEC-5 Simulation of Flood Control and Conservation Systems User's Manual April 1982.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "HEC-5 Exhibit 8 of User's Manual", March 1985.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Interactive Paired-Function Data Input Program for Flood Damage Data PIP, Program User's Manual*, January 1986.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Structure Inventory for Damage Analysis (SID) User's Manual* 1982.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Structure Inventory for Damage Analysis Edit Program (SIDEDT), User's Manual", 1983.
- U. S. Army Corps of Engineers Hydrologic Engineering Center, "Water Surface Profiles (HEC-2) User's Manual", 1982.

Water Resources Council, 'Principles and Guidelines for Economic Evaluation of Water Resources Projects', 1983.

Windsor, James S., "A Programming Model for the Design of Multireservoir Flood Control Systems", Water Resources Research, Vol. 11, No. 1, February 1975, pp. 30-36.

Windsor, James S., "Optimization Model for the Operation of Flood Control Systems", Water Resources Research, 1973, pp.1219-1226.

Yeh, William W. G., "State of the Art Review: Theories and Applications of Systems Analysis Techniques to the Optimal Management and Operation of a Reservoir System", UCLA School of Engineering and Applied Science, June 1982.

Young, G. K., "Finding Reservoir Operating Rules", **Journal of the Hydraulics Division, ASCE**, Vol.93, No.6, 1967, pp.297-321.

Appendix A

HEC Data Storage System (DSS)

A DSS file stores data by records. A file may contain a single record or thousands or more. A unique alphanumeric string of 80 or fewer characters identifies each record. The identifier is also called a "pathname". There is one pathname for every record and no two pathnames can be the same. The pathname begins and ends with a slash ("/") and consists of six parts, each separated by a slash ("/"). The six parts are often called A, B, C, D, E, and F. A possible pathname would be:

/A/B/C/D/E/F/

Pathname parts follow certain naming conventions as shown below:

Pathname Part	Description
Α	River basin or project identifier
В	Location, reach, or gage identifier
С	Data variable or variables (eg. FLOW-FREQ)
D	Not normally used
E	Year
F	Name of alternative or measure

For example, if HEC-5 were used to compute a flow-frequency function for two alternative plans and the data were stored in a DSS file, the resulting pathnames for these functions might look like this:

/FALL RIVER/SITE1/FREQ-FLOW///BASE/ /FALL RIVER/SITE1/FREQ-FLOW///PLAN/

All functions required for computation of expected annual damage regardless of where they are generated, are passed through DSS. The following paired data and its C-pathname identifier are passed through DSS:

Basic Relationships	C-Part
Stage-Damage	ELEV-DAMAGE
Stage-Flow	ELEV-FLOW
Flow-Frequency	FREQ-FLOW
Derived Relationships	C-Part
Derived Relationships Flow-Damage	C-Part FLOW-DAMAGE
·	

Appendix B

Description of Branch-and-Bound Routines

The main program contains the branch-and-bound algorithm and calls six subroutines to provide various pieces of information as described below:

Subroutine PRE: Preprocessor which defines blocks of data describing single measures and stores the blocks by site and measure number.

Subroutine HEC5IN: Routine which creates an HEC-5 input file containing one measure at each site comprising a plan.

Subroutine EADIN1: Routine which creates a base condition EAD input file from user input.

Subroutine EADIN2: Routine which creates an EAD input file for a specific plan.

Subroutine NETBEN: Routine which performs the final economic net benefit analysis.

Subroutine BBOUT: Routine which writes the branch-and-bound summary output tables.

Appendix C

Input Data Overview

The master input file is based on the HEC-5 input format, and uses the same records to describe the basin characteristics, reservoir operation criteria, and system schematic. An example input file is included in this appendix. Previous experience in how to set up and use an HEC-5 data file is required in order to use the Branch-and-bound program. All the proposed measures at sites in the basin are described in the master input file.

Three new records (BB, EB and M\$) are added to the standard HEC-5 input to create a master branch-and-bound input data set. Each record group describing a proposed measure begins with a "BB" record and ends with an "EB" record. The first two fields of the BB record contain the site number, beginning with 1 at the most upstream site and progressing downstream until all sites in the basin are numbered. Control points at which no measures are proposed will be input as usual. Field 2 of the BB record contains the index of the measure at that site, beginning with 1 as the status quo alternative and continuing sequentially until all measures at that site are numbered. Each alternative measure at each site is then uniquely identified by site number and measure index. The EB record is blank. The third new record is the "M\$" containing the total annualized cost of the proposed measure. For existing conditions and for measures for which there is no cost (i.e., modified operating rules at existing reservoirs) the M\$ record is omitted.

HEC-5 damage records (DA, DF, DQ, and DC) are required at locations where expected annual damages are to be computed. These records are written to the DSS file for use by EAD in the economic evaluation of the plan. The ZWQF record writes modified flow-frequency functions at all locations with damage records to the DSS file. ZR records containing the four required pathnames corresponding to the project, site, type of data, and measure identifier are required to define the data to be retrieved from the DSS file.

Fall River Input File

```
BRANCH-AND-BOUND TEST DATA
                                           FALL RIVER SYSTEM
T1
T2
        BASED ON HEC-5 STANDARD TEST 10
        THREE RESERVOIR SYSTEM - TWO FLOODING SITES
J1
J2
              Ó
                   .167
     24
J3
                                            1
      6
                                                                          2
                                                3.12
                                                        3.13
                                                                3.10
                                                                       4.04
J8
   1.10
           1.12
                   1.13
                          2.10
                                  2.12
                                         2.13
                              SITE 1
C SITE 1 MEASURE 1 = EXISTING CONDITIONS
                                                                          2
BB
RL
                                           .4
RO
RS
      2
             .1
-1
RQ
CP
           6000
IDSITE01
              2
                     .1
                           1.0
RT
EB
С
C SITE 1 MEASURE 2 = RESERVOIR
BB
RL
          50000
                         50000 150832 200000
RO
              Ω
                  50000
                         70000
                               100000 150832 200000
RS
                                  8000 100000 200000
           5000
                          7000
RQ
                   6500
R2 99999
          99999
CP
           6000
IDSITE01
              2
                     .1
                           1.0
RT
M$ 760.
ZR A=FORD B=SITEO1 C=FREQ-FLOW F=PLAN
ZR A=FORD B=SITE04 C=FREQ-FLOW F=PLAN
EB
DA1
                   .90u
                          .800
                                                 .500
                                                        .400
     17
           .999
                                  .700
                                         .600
                                                                .300
                                                                       .250
DF
DF
   .200
           .150
                   .100
                          .050
                                  .020
                                         .010
                                                 .005
                                                        .002
    17
          28800
                 35000
                         42000
                                50500
                                        60500
                                                73000
                                                       90000
                                                              114000 130000
DQ
         180000 230000 323000
                                       640000
                                               840000 1000000
DQ150000
                                490000
            50
                                          140
                                                 190
                                                                 380
                                                                        480
                    80
                          100
                                  110
                                                         290
DC1
   600
            800
                  1210
                          2200
                                  4200
                                         5380
                                                 6120
                                                        6500
ZR A=FORD B=SITEO1 C=FREQ-FLOW F=BASE
ZR A=FORD B=SITEO1 C=FLOW-DAMAGE F=BASE
C SITE 2 MEASURE 1 = EXISTING CONDITIONS
CP
          21000
IDSITE02
RT
                    . 1
                           3.1
EB
C
C
```

```
C SITE 2 MEASURE 2 = RESERVOIR
BB
         100000
                      0 100000 654576 1000000
RL
RO
RS
                 100000 200000
                                400000 600000 800000 1000000
RQ
          18000
                         30000
                                 40000 100000
                                               300000 500000
R2 99999
          99999
CP
          21000
IDSITEO2
RT
                     . 1
                           3.1
M$
   400.
ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
ΕB
C ****************************
C
                              SITE 3
C *********
C SITE 3 MEASURE 1 = EXISTING CONDITIONS
BB
                                            .5
RL
              .3
                     .2
                             .3
RO
RS
             . 1
      2
RQ
             - 1
CP
          12000
IDSITE03
RT
                           3.2
EB
C
C
C SITE 3 MEASURE 2 = 800000 AC-FT FLOOD STORAGE
88
         200000
                     0 100000 900000 1000000
RL
RO
RS
              0 100000 200000 400000 600000 800000 1000000
RQ
          18000
                 21000
                         30000
                                40000 100000 300000 500000
R2 99999
          99999
CP
          12000
IDSITE03
RT
                    .1
                           3.2
DR
                                                         5000
M$
  800.
ZR A=FORD B=SITE04 C=FREQ-FLOW F=PLAN
C SITE 3 MEASURE 3 = 300000 AC-FT FLOOD STORAGE
C
BB
RL
         200000
                     0 600000 900000 1000000
RO
                100000 200000 400000 600000 800000 1000000
RS
              0
                         30000
                                 40000 100000 300000 500000
RO
          18000
                 21000
R2 99999
          99999
CP
          12000
IDSITE03
RT
                     .1
                           3.2
DR
                                                         5000
M$
  300.
ZR
  A=FORD B=SITE04 C=FREQ-FLOW F=PLAN
E8
 ***************************
C SITE 4 MEASURE 1 = EXISTING CONDITIONS
```

```
CP
           40000
IDSITE04
RT
EB
C
C SITE 4 MEASURE 2 = CHANNEL IMPROVEMENT
BB
CP
           40000
IDSITE04
RT
QS
           10000
                    20000
                            30000
                                    40000
                                            100000
                                                   300000
                                                            500000
                                                                    700000
                                                                            900000
             300
                     350
                              450
                                      500
                                              550
                                                       600
                                                               625
                                                                       650
                                                                                700
EL
C$ 40000
                    4000
                             5000
                                     6000
            2000
    25.
M$
ZR A=FORD B=SITE04 C=FLOW-DAMAGE F=PLAN
EΒ
DA1
                     .900
                                                              .400
                                              .600
                                                      .500
                                                                               .250
      17
            .999
                             .800
                                     .700
                                                                       .300
DF
                                              .010
            .150
                     .100
                             .050
                                     .020
                                                      .005
                                                              .002
    .200
DF
                                             60500
                                                     73000
                                                                    114000
                                                                             130000
DQ
      17
           28800
                   35000
                            42000
                                    50500
                                                             90000
DQ150000
          180000
                   230000
                           323000
                                   490000
                                           640000
                                                    840000
                                                           1000000
             100
                     170
                              220
                                      300
                                              400
                                                      520
                                                               750
                                                                       1100
                                                                               1450
DC1
                             9800
                    4900
                                             13320
                                                     14170
DC 1900
                                    12200
            2800
                                                             14660
ZR A=FORD B=SITEO4 C=FREQ-FLOW F=BASE
ZR A=FORD B=SITE04 C=FLOW-DAMAGE F=BASE
ED
       0
              18
                       0
                                057060610
                                                0
                                                         6
RF
FC
      .3
               1
                     1.5
                                2
                                        3
     A=FORD C=FREQ-FLOW
ZWQF
ZW
   A=FORD B=ALL CATE C=REACH-EAD
                    1000
                             2000
                                     3000
                                             18000
                                                     37000
                                                             42000
                                                                      50000
                                                                              27000
IN
      1 6 JUNE
IN 20000
                                     3000
                                             2000
                                                      1000
                                                                       1000
                                                                               1000
           13000
                    5000
                             4000
                                                              1000
                                     4000
                             3000
                                             6000
                                                     20000
                                                             57000
                                                                     100000
                                                                              90000
                    2000
IN
          6 JUNE
                                                      9000
                   37000
IN 70000
           50000
                            24000
                                    24000
                                            15000
                                                              3000
                                                                      2000
                                                                               1500
IN
         6 JUNE
                    3000
                             6000
                                    27000
                                            60000
                                                    105000
                                                             78000
                                                                      60000
                                                                              45000
IN 33000
           24000
                    18000
                            12000
                                    12000
                                             9000
                                                      6000
                                                              3000
                                                                      2000
                                                                               1000
         6 JUNE
                                    19000
                                             13000
                                                     10000
                                                              7000
                                                                       4000
                                                                               1000
IN
                    2000
                             4000
      4
IN
    1000
            4000
                   10000
                            25000
                                    13000
                                             7000
                                                      4000
                                                              2000
                                                                       1000
                                                                                500
ΕJ
ER
```

Appendix D

Branch-and-Bound Program Output

The branch-and-bound program output for the Fall River example is shown on the following pages. The following discussion explains the output with key items numbered for reference. The input consists of all proposed measures in an HEC-5 format as described in Appendix C, with the new BB and EB records used to separate the discrete alternatives.

The J4 record 1 (field 10=2) is required to write the flow-frequency curves to the DSS file at all damage locations. The existing condition for site 1 begins with a BB record 2, signifying site 1 (field 1=1), and measure 1 (field 2=1). Field 10 of the first BB record controls the type of output (1 = summary output, 2 = summary and intermediate output). The HEC-5 input requires that the most upstream site on every branch be a reservoir. Existing conditions were modeled by placing a "dummy" reservoir at these points. A "dummy" reservoir is a reservoir which is given a very small storage volume and for which outflow is set equal to inflow. This effectively allows no water to be stored and the site becomes an uncontrolled point on the stream. The storages are shown on the RL record 3 and the unlimited outlet capacity on the RQ record. 4 The ID record 5 contains a four character site identifier in fields 2 through 5 and a two-digit number corresponding to the site number (SITE01). The RT record 6 shows that the flows are routed from site 1 to site 2. The EB record 7 signifies the end of the data for this measure.

An M\$ record 8 is used to represent the total annualized cost to implement the measure. ZR records 9 are required within the BB-EB block of data for each measure (except for existing condition). The function (or functions) this measure modifies is given by the C-part. The A-part is the project name, the B-part the downstream site which will be affected by this measure, and the F-part the four-character string "PLAN". The measure at site 1 will alter the flow-frequency function at damage locations downstream of sites 1 and 4. Two ZR records are therefore required. The B-part must be the exact six-character identifier found on the ID-record in order for the correct DSS data to be used by EAD.

Damage records DA, DF, DQ, and DC 10 are required to describe base conditions for each damage site. Percent exceedence frequency, flow, and corresponding damages are on the DF, DQ, and DC records respectively. ZR records corresponding to this base condition data follow 11. Again, the B-part must exactly match the first field of the ID record and the F-part must be the four-character string "BASE".

Data describing site 2 is entered in similar fashion, with the proposed reservoir modifying the flow-frequency function only at site 4. There are no damages occurring directly downstream of site 2 so no damage records are required. The proposed reservoir, however, modifies the flow-frequency function at site 4. A ZR record 12 is required to supply this information.

Similarly, the proposed reservoirs at site 3 affect the flow-frequency function at site 4, shown by the ZR records 13 and 14.

The proposed channel improvement at site 4 modifies the flow-damage function at this site. The new flow-damage function is analyzed outside of this program and entered into the DSS file prior to the branch-and-bound evaluation. A ZR record identifies this data 15. An alternative way to describe a channel improvement is to enter stage-flow and stage-damage functions for this measure.

The F-part is "PLAN" is all cases. Thus only one alternative which modifies a function other then flow-frequency may be analyzed for each site. Note also that this example performs the expected annual damage computations using six ratios of the input hydrograph (FC record) 16.

The branch-and-bound output begins with a summary of the system analyzed 17, including number of sites in the system and number of measures proposed at each site. Sixteen plans are enumerated in this example 18. An economic summary of the optimum plan follows 19. Intermediate output of all plans enumerated 20 gives more detailed information about the branch-and-bound process and provides economic summaries of the intermediate plans.

Branch-and-Bound Program Output

```
+ BRANCH-AND-BOUND ENUMERATION PROGRAM +
+ VERSION DATE: OCTOBER 31, 1986 +
```

***** INPUT LISTING *****

```
BRANCH-AND-BOUND TEST DATA
                                                  FORD RIVER SYSTEM
   T2
           BASED ON HEC-5 STANDARD TEST 10
           THREE RESERVOIR SYSTEM - TWO FLOODING SITES
   T3
                                  2
   J1
   J2
                        .167
   J3
          6
   J4
   J8
       1.10
               1.12
                       1.13
                               2.10
                                      2.12
                                                2.13
                                                        3.12
                                                                3.13
                                                                        3,10
                                                                                 4.04
                                    SITE 1
   C SITE 1 MEASURE 1 = EXISTING CONDITIONS
   BB
   RL
                  . 1
                                  .2
                                          .3
                                                  .4
   RO
   RS
   RQ
   СР
               6000
5
6
7
   IDSITE01
                                1.0
   ŔŤ
   €B
   C SITE 1 MEASURE 2 = RESERVOIR
   BB
              50000
                              50000 150832 200000
   RO
                      50000
                              70000
                                     100000 150832 200000
   RS
          6
               5000
                               7000
                                        8000 100000 200000
   RO
                       6500
   R2 99999
              99999
   CP
               6000
   IDSITE01
   RT
                         .1
                                1.0
                  2
  M$ 760.
  ZR A=FORD B=SITEO1 C=FREQ-FLOW F=PLAN
   ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
  EB
10 DA1
                       .900
                                .800
                                        .700
                                                                                 .250
        17
                .999
  DF
                                                .600
                                                        .500
                                                                .400
                                                                         .300
  DF
       .200
               .150
                       .100
                                .050
                                        .020
                                                .010
                                                        .005
                                                                .002
              28800
                      35000
                              42000
                                       50500
                                               60500
                                                       73000
                                                               90000
                                                                      114000 130000
  DQ150000
             180000
                     230000
                             323000
                                     490000
                                                      840000 1000000
                                              640000
                                                         190
  DC1
                50
                                100
                                                                         380
                                                                                  480
                         80
                                        110
                                                 140
                                                                 290
       600
                800
                       1210
                               2200
                                       4200
  DC
                                                5380
                                                        6120
                                                                6500
11 ZR A=FORD B=SITEO1 C=FREQ-FLOW F=BASE
   ZR A=FORD B=SITEO1 C=FLOW-DAMAGE F=BASE
```

```
C SITE 2 MEASURE 1 = EXISTING CONDITIONS
              21000
   IDSITE02
                          .1
                                 3.1
   RT
   E8
   C
   C SITE 2 MEASURE 2 = RESERVOIR
   BB
             100000
                           0 100000 654576 1000000
   RO
                  0 100000 200000 400000 600000 800000 1000000
   RS
              18000
                      21000
                              30000
                                       40000 100000 300000 500000
   RQ
   R2 99999
              99999
              21000
   IDSITE02
                         .1
                                 3.1
   RT
      400.
   M$
12 ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
                                    SITE 3
   C SITE 3 MEASURE 1 = EXISTING CONDITIONS
   RL
                                                  .5
   RO
          2
                          .5
-1
                 .1
   RS
   RQ
   CP
              12000
   IDSITE03
   RT
                                 3.2
   EB
   C SITE 3 MEASURE 2 = 800000 AC-FT FLOOD STORAGE
   BB
   RL
             200000
                          0 100000 900000 1000000
   RO
                     100000 200000 400000 600000 800000 1000000
21000 30000 40000 100000 300000 500000
   RS
                  n
              18000
   RQ
   R2 99999
              99999
   CP
              12000
   IDSITE03
                                3.2
   RT
                         .1
          3
                                                                5000
   DR
          3
   M$
      800.
13 ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
   EB
   С
   C SITE 3 MEASURE 3 = 300000 AC-FT FLOOD STORAGE
   88
             200000
                          0 600000 900000 1000000
   RO
                    100000 200000 400000 600000 800000 1000000
   RS
                      21000
                              30000
                                       40000 100000
                                                      300000 500000
              18000
```

```
R2 99999
             99999
             12000
  IDSITE03
                               3.2
  RT
                                                              5000
  DR
  M$ 300.
14 ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
  C SITE 4 MEASURE 1 = EXISTING CONDITIONS
  BB
             40000
  CP
  IDSITE04
  RT
  ΕB
  C
  C
  C SITE 4 MEASURE 2 = CHANNEL IMPROVEMENT
  BB.
             40000
  CP
  IDSITE04
  RT
                                     40000 100000 300000 500000 700000 900000
  QS
              10000
                     20000
                              30000
              300
                      350
                               450
                                       500
                                               550
                                                        600
                                                                625
                                                                        650
                                                                                700
  EL
              2000
                       4000
                               5000
                                       6000
  C$ 40000
  M$ 25.
15 ZR A=FORD B=SITEO4 C=FLOW-DAMAGE F=PLAN
  EB
  DA1
               .999
                       .900
                               .800
                                       .700
                                              .600
                                                      .500
                                                               .400
                                                                       .300
                                                                               .250
  DF
        17
  DF
                       .100
                               .050
                                       .020
                                              .010
                                                      .005
                                                               .002
      .200
               .150
                             42000
                                     50500
                                                             90000 114000 130000
        17
             28800
                     35000
                                             60500
                                                     73000
  DQ
  DQ150000
             180000
                    230000
                            353000
                                    490000
                                            640000
                                                   840000 1000000
               100
                       170
                               220
                                       300
                                               400
                                                       520
                                                               750
                                                                       1100
                                                                               1450
  DC1
  DC 1900
              2800
                      4900
                               9800
                                     12200
                                             13320
                                                      14170
                                                              14660
  ZR A=FORD B=SITEO4 C=FREQ-FLOW F=BASE
  ZR A=FORD B=SITEO4 C=FLOW-DAMAGE F=BASE
  ED
  BF
                                  057060610
  FC .3 1 1.5
ZWQF A=FORD C=FREQ-FLOW
16 FC
  ZW A=FORD B=ALL CATE C=REACH-EAD
                                                                              27000
                                                                      50000
  IN
       1 6 JUNE
                      1000
                              2000
                                       3000
                                              18000
                                                      37000
                                                              42000
  IN 20000 13000
                      5000
                               4000
                                       3000
                                              2000
                                                      1000
                                                              1000
                                                                       1000
                                                                               1000
         2 6 JUNE
                      2000
                              3000
                                       4000
                                                      20000
                                                              57000
                                                                     100000
                                                                              90000
                                              6000
  IN
                              24000
                                      24000
                                              15000
                                                      9000
                                                              3000
                                                                       2000
                                                                               1500
  IN 70000
             50000
                     37000
  IN
         3 6 JUNE
                      3000
                              6000
                                      27000
                                              60000
                                                    105000
                                                              78000
                                                                      60000
                                                                              45000
  IN 33000
             24000
                      18000
                              12000
                                      12000
                                              9000
                                                      6000
                                                              3000
                                                                       2000
                                                                               1000
                      2000
                              4000
                                      19000
                                              13000
                                                      10000
                                                               7000
                                                                       4000
                                                                               1000
  IN
        4 6 JUNE
                      10000
                              25000
                                      13000
                                               7000
                                                               2000
                                                                       1000
                                                                                500
      1000
              4000
                                                      4000
  IN
  EJ
  ER
```

**** END OF INPUT LISTING *****

17 BRANCH-AND-BOUND SUMMARY OUTPUT SYSTEM SUMMARY NUMBER OF SITES IN SYSTEM 4 TOTAL NUMBER OF MEASURES PROPOSED 9 MEASURES PROPOSED AT SITE 1 2 MEASURES PROPOSED AT SITE 2 2 MEASURES PROPOSED AT SITE 3 3 MEASURES PROPOSED AT SITE 4 2 18 19 ECONOMIC SUMMARY OF OPTIMUM PLAN THE MAXIMUM OBJECTIVE FUNCTION IS. 789.77 THE OPTIMAL PLAN INCLUDES THE FOLLOWING MEASURES : SITE 1 MEASURE 1 SITE 2 MEASURE 2 SITE 3 MEASURE 3 SITE 4 MEASURE 2 EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01 EXPECTED ANNUAL DAMAGES - PROPC ED SYSTEM . . . 732.24 EXPECTED ANNUAL DAMAGE REDUCTION. 1514.77 TOTAL SYSTEM ANNUAL COST. . 725.00 EXPECTED ANNUAL SYSTEM NET BENEFITS 789.77 ********** INTERMEDIATE OUTPUT OF ALL PLANS ENUMERATED 20 *************** PLAN 1 SITE 1 MEASURE 1 SITE 2 MEASURE SITE 3 MEASURE 1 SITE 4 MEASURE 1 THE OBJECTIVE FUNCTION IS

0.00

```
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                              2247.01
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                0.00
TOTAL SYSTEM ANNUAL COST. .
EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                0.00
COMPARE
OBJECTIVE FUNCTION ( 0.00) IS GREATER THAN TRIAL OPTIMUM ( -999.00)
SET NEW TRIAL OPTIMUM TO
                           0.00
    EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:
     SITE = 1
               MEASURE = 1
     BOUND = 1687.51
BOUND ( 1687.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                           0.00).
FURTHER DIVIDE SUBSET
    EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:
     SITE = 1
                 MEASURE = 1
     SITE = 1 MEASURE = 1
SITE = 2 MEASURE = 1
BOUND = 1687.51
BOUND ( 1687.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                            0.00).
FURTHER DIVIDE SUBSET
    EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:
                 MEASURE = 1
     SITE = 1
                 MEASURE = 1
     SITE = 2
     SITE = 3
                 MEASURE = 1
     BOUND = 1128.02
BOUND ( 1128.02) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                           0.00).
FURTHER DIVIDE SUBSET
    PLAN 2
 SITE 1
SITE 2
            MEASURE 1
            MEASURE 1
            MEASURE 1
 SITE 3
 SITE 4
            MEASURE 2
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . .
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                             2218.15
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                               28.86
25.00
EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                3.86
```

SET NEW TRIAL OPTIMUM TO 3.86	
	• • • • • • • • • • • • • • • • • • • •
PLAN 3	
	
SITE 1 MEASURE 1 SITE 2 MEASURE 1	
SITE 3 MEASURE 2 SITE 4 MEASURE 1	
THE OBJECTIVE FUNCTION IS	
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM 2247.01	
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM 1376.36 EXPECTED ANNUAL DAMAGE REDUCTION 870.65	
TOTAL SYSTEM ANNUAL COST 800.00 EXPECTED ANNUAL SYSTEM NET BENEFITS 70.65	
The state of the s	
COMPARE	
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU	
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU	
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU	M (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65	M (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND	M (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES:	M (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES:	M (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND	M (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION (м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION (м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION (м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (FURTHER DIVIDE SUBSET	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1 SITE 3 MEASURE 2	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (FURTHER DIVIDE SUBSET PLAN 4 PLAN 4 TRIAL OPTIMU TO 1.65 FURTHER DIVIDE SUBSET	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION (FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1 SITE 3 MEASURE 2 SITE 4 MEASURE 2	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 887.51 BOUND (887.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION (FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1 SITE 3 MEASURE 2 SITE 4 MEASURE 2	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1	м (3.
OBJECTIVE FUNCTION (70.65) IS GREATER THAN TRIAL OPTIMU SET NEW TRIAL OPTIMUM TO 70.65 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1	м (3.

	OPTIMUM TO 109.57	• • • • • • • • • • • • • • • • • • • •
PLAN 5		
	MEASURE 1	
SITE 2 SITE 3 SITE 4	MEASURE 1 MEASURE 3 MEASURE 1	
THE OBJECTIVE	FUNCTION IS	584.39
EXPECTED ANNUA	AL DAMAGES - EXISTING SYSTEM AL DAMAGES - PROPOSED SYSTEM AL DAMAGE REDUCTION	
	ANNUAL COST	300.00 584.39
COMPARE		
OBJECTIVE FUNC	CTION (584.39) IS GREATER THAN	TRIAL OPTIMUM (109
	OPTIMUM TO 584.39	
	SUBSET BOUND ES THE FOLLOWING SITES:	
SITE = 2 SITE = 3	MEASURE = 1 MEASURE = 1 MEASURE = 3 1387.51	
	7.51)IS GREATER THAN TRIAL OBJECTIVE	FUNCTION (584.39
PLAN 6		
PLAN 6	E SUBSET MEASURE 1	
PLAN 6 SITE 1 SITE 2 SITE 3 SITE 4	MEASURE 1 MEASURE 1 MEASURE 3	624.45

```
OBJECTIVE FUNCTION ( 624.45) IS GREATER THAN TRIAL OPTIMUM ( 584.39)
     SET NEW TRIAL OPTIMUM TO 624.45
     BOUND ( 624.45) IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 624.45).
     FURTHER DIVIDE SUBSET
          PLAN 7
      SITE 1
                   MEASURE 1
      SITE 2
SITE 3
                   MEASURE 2
                   MEASURE 1
                   MEASURE 1
      SITE 4
     THE OBJECTIVE FUNCTION IS . . . . . . . . . . . . 709.86
    EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . .
                                                        2247.01
     EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                        1137.15
     EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                       1109.86
    TOTAL SYSTEM ANNUAL COST. . . . . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                         400.00
     COMPARE
     OBJECTIVE FUNCTION ( 709.86) IS GREATER THAN TRIAL OPTIMUM ( 624.45)
    SET NEW TRIAL OPTIMUM TO 709.86
          EVALUATE SUBSET BOUND
     SUBSET INCLUDES THE FOLLOWING SITES:
                       MEASURE = 1
           SITE = 1
                     MEASURE = 2
           SITE = 2
           BOUND = 1287.51
              1287.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 709.86).
     BOUND (
     FURTHER DIVIDE SUBSET
         EVALUATE SUBSET BOUND
     SUBSET INCLUDES THE FOLLOWING SITES:
           SITE = 1
                        MEASURE = 1
                       MEASURE = 2
           SITE = 2
           SITE = 3
                       MEASURE = 1
                    328.02
           BOUND =
BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET
          PLAN 8
     SITE 1
SITE 2
SITE 3
SITE 4
                   MEASURE 1
                   MEASURE 2
                   MEASURE 2
MEASURE 1
```

```
THE OBJECTIVE FUNCTION IS . . . . . . . . . . . . .
                                                       115.17
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                       2247.01
                                                         931.84
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                        1315.17
TOTAL SYSTEM ANNUAL COST. . . .
                                                        1200.00
                                      . . . . . . .
EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . .
                                                         115.17
COMPARE
OBJECTIVE FUNCTION ( 115.17) IS LESS THAN TRIAL OPTIMUM (
                                                                     709.86)
DO NOT UPDATE TRIAL OPTIMUM
      PLAN 9
 SITE 1
                MEASURE 1
 SITE 2
SITE 3
               MEASURE 2
MEASURE 2
 SITE 4
                MEASURE 2
THE OBJECTIVE FUNCTION IS . . . . . . . . . . . .
                                                        286.84
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                       2247.01
                                                         735.17
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                        1511.84
                                                        1225.00
TOTAL SYSTEM ANNUAL COST. . . .
EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . .
                                                         286.84
COMPARE
OBJECTIVE FUNCTION ( 286.84) IS LESS THAN TRIAL OPTIMUM ( 709.86)
DO NOT UPDATE TRIAL OPTIMUM
      PLAN 10
 SITE 1
               MEASURE 1
 SITE 2
               MEASURE 2
               MEASURE 3
 SITE 3
 SITE 4
               MEASURE 1
THE OBJECTIVE FUNCTION IS . . . . . . . . . . . .
                                                        682.06
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . .
                                                       2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                         864.95
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                        1382.06
TOTAL SYSTEM ANNUAL COST. . . . . . . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . . .
                                                         700.00
                                                         682.06
```

OBJECTIVE FUNCTION (682.06) IS LESS THAN TRIAL OPTIMUM (709.86)
DO NOT UPDATE TRIAL OPTIMUM EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES:
SITE = 1
BOUND (987.51)IS GREATER THAN TRIAL OBJECTIVE FUNCTION (709.86). FURTHER DIVIDE SUBSET
PLAN 11
SITE 1 MEASURE 1 SITE 2 MEASURE 2 SITE 3 MEASURE 3 SITE 4 MEASURE 2
THE OBJECTIVE FUNCTION IS
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM 2247.01 EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM 732.24 EXPECTED ANNUAL DAMAGE REDUCTION
TOTAL SYSTEM ANNUAL COST
COMPARE
OBJECTIVE FUNCTION (789.77) IS GREATER THAN TRIAL OPTIMUM (709.86) SET NEW TRIAL OPTIMUM TO 789.77
PLAN 12

SITE 1 MEASURE 2 SITE 2 MEASURE 1 SITE 3 MEASURE 1 SITE 4 MEASURE 1
THE OBJECTIVE FUNCTION IS258.81
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM 2247.01 EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM 1745.82 EXPECTED ANNUAL DAMAGE REDUCTION 501.19
TOTAL SYSTEM ANNUAL COST

```
OBJECTIVE FUNCTION ( -258.81) IS LESS THAN TRIAL OPTIMUM ( 789.77)
    DO NOT UPDATE TRIAL OPTIMUM
         EVALUATE SUBSET BOUND
     SUBSET INCLUDES THE FOLLOWING SITES:
           SITE = 1 MEASU
BOUND = 1045.05
                       MEASURE = 2
    BOUND ( 1045.05) IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 789.77).
    FURTHER DIVIDE SUBSET
          EVALUATE SUBSET BOUND
     SUBSET INCLUDES THE FOLLOWING SITES:
           SITE = 1
                        MEASURE = 2
           SITE = 1 MEASURE = 2
SITE = 2 MEASURE = 1
BOUND = 1045.05
    BOUND ( 1045.05) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
     FURTHER DIVIDE SUBSET
          EVALUATE SUBSET BOUND
    SUBSET INCLUDES THE FOLLOWING SITES:
           SITE = 1
                        MEASURE = 2
          SITE = 2 MEASURE = 1
SITE = 3 MEASURE = 1
BOUND = -156.91
BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET
          PLAN 13
      SITE 1
                  MEASURE 2
                  MEASURE 1
MEASURE 2
     SITE 2
SITE 3
                   MEASURE 1
     THE OBJECTIVE FUNCTION IS . . . . . . . . -408.32
    EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
    EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . EXPECTED ANNUAL DAMAGE REDUCTION . . . . . .
                                                        1095.33
                                                        1151.68
     EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                        -408.32
    COMPARE
    OBJECTIVE FUNCTION ( -408.32) IS LESS THAN TRIAL OPTIMUM ( 789.77)
    DO NOT UPDATE TRIAL OPTIMUM
```

PLAN 14 SITE 1 SITE 2 SITE 3 MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 SITE 4 THE OBJECTIVE FUNCTION IS -341.84 EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 2247.01 1003.85 EXPECTED ANNUAL DAMAGE REDUCTION. 1243.16 TOTAL SYSTEM ANNUAL COST. . . 1585.00 -341.84 COMPARE OBJECTIVE FUNCTION (-341.84) IS LESS THAN TRIAL OPTIMUM (789.77) DO NOT UPDATE TRIAL OPTIMUM PLAN 15 SITE 1 MEASURE 2 MEASURE 1 MEASURE 3 SITE 2 SITE 3 SITE 4 MEASURE 1 137.57 EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 2247.01 1049.44 EXPECTED ANNUAL DAMAGE REDUCTION. 1197.57 TOTAL SYSTEM ANNUAL COST. . 1060.00 EXPECTED ANNUAL SYSTEM NET BENEFITS 137.57

COMPARE

OBJECTIVE FUNCTION (137.57) IS LESS THAN TRIAL OPTIMUM (789.77)

DO NOT UPDATE TRIAL OPTIMUM
EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:

BOUND = 745.05

BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET

PLAN 16

SITE 1 MEASUR	E 2	
SITE 2 MEASUR	E 2	
SITE 3 MEASUR	E 1	
SITE 4 MEASUR	E 1	
THE OBJECTIVE FUNCTI	ON IS	85.05
EXPECTED ANNUAL DAMA	GES - EXISTING SYSTEM	2247.01
EXPECTED ANNUAL DAMA	GES - PROPOSED SYSTEM	1001.96
EXPECTED ANNUAL DAMA	GE REDUCTION	1245.05
TOTAL SYSTEM ANNUAL	cost	1160.00
EXPECTED ANNUAL SYST	EM NET BENEFITS	85.05

COMPARE

OBJECTIVE FUNCTION (85.05) IS LESS THAN TRIAL OPTIMUM (789.77)

DO NOT UPDATE TRIAL OPTIMUM EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES:

BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET ***** END OF BRANCH-AND-BOUND OUTPUT *****

Appendix E

Sensitivity Analysis Output

```
+ BRANCH-AND-BOUND ENUMERATION PROGRAM +
+ VERSION DATE: OCTOBER 31, 1986 +
```

***** INPUT LISTING *****

```
BRANCH-AND-BOUND TEST DATA
                                              FALL RIVER SYSTEM
T1
        SENSITIVITY ANALYSIS
T2
        THREE RESERVOIR SYSTEM - TWO FLOODING SITES
T3
                               2
                      4
                                       3
                     .167
J3
J4
                                                                     3.10
J8
   1.10
            1.12
                    1.13
                            2.10
                                    2.12
                                            2.13
                                                     3.12
                                                             3.13
                                SITE 1
C SITE 1 MEASURE 1 = EXISTING CONDITIONS
RR
                                       .3
                                               .4
                              .2
RL
              . 1
RO
RS
              .1
RQ
            6000
CP
IDSITE01
RT
               2
                      .1
                             1.0
EВ
C
C SITE 1 MEASURE 2 = RESERVOIR
BB
           50000
                           50000 150832 200000
RL
RO
                   50000
                           70000 100000 150832 200000
            5000
                    6500
                            7000
                                    8000 100000 200000
RQ
R2 99999
           99999
            6000
CP
IDSITE01
RT
M$
ZR A=FORD B=SITEO1 C=FREQ-FLOW F=PLAN
ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
EB
DA1
            .999
                    .900
                            .800
                                     .700
                                             .600
                                                     .500
                                                             .400
                                                                     .300
                                                                              .250
DF
      17
   .200
            .150
                    .100
                            .050
                                     .020
                                             .010
                                                     .005
                                                             .002
DF
                                                                   114000 130000
                                                    73000
                                                            90000
DQ
      17
           28800
                   35000
                           42000
                                   50500
                                           60500
DQ150000
          180000
                  230000
                          323000
                                   490000
                                           640000
                                                   840000 1000000
              50
                     80
                             100
                                     110
                                             140
                                                      190
                                                             290
                                                                      380
                                                                              480
     600
             800
                    1210
                            2200
                                                     6120
                                                             6500
DC
                                    4200
                                            5380
```

```
ZR A=FORD B=SITEO1 C=FREQ-FLOW F=BASE
ZR A=FORD B=SITEO1 C=FLOW-DAMAGE F=BASE
  *********************************
                            SITE 2
C SITE 2 MEASURE 1 = EXISTING CONDITIONS
CP
          21000
IDSITE02
                     .1
                            3.1
RT
ΕB
С
C
С
C SITE 2 MEASURE 2 = RESERVOIR
C
BB
         100000
                      0 100000 654576 1000000
RL
RO
                 100000 200000 400000 600000 800000 1000000
RS
              Ω
           18000
                         30000
                                 40000 100000 300000 500000
RQ
                  21000
R2 99999
           99999
CP
          21000
IDSITE02
                           3.1
RT
                     .1
M$ 400.
ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
C
C
C
C SITE 3 MEASURE 1 = EXISTING CONDITIONS
88
RL
                     .2
                             .3
                                    .4
                                            .5
RO
      2
RS
                     .5
             .1
RQ
             - 1
CP
          12000
IDSITE03
      3
                     .1
                           3.2
RT
EB
¢
C SITE 3 MEASURE 2 = 300000 AC-FT FLOOD STORAGE
C
BB
         200000
                     0 600000 900000 1000000
RL
RO
RS
                 100000 200000 400000 600000 800000 1000000
              0
          18000
                         30000
RQ
                  21000
                                 40000 100000 300000 500000
R2 99999
          99999
CP
      3
          12000
IDSITE03
RT
                     . 1
                           3.2
                                                         5000
  300.
M$
ZR A=FORD B=SITE04 C=FREQ-FLOW F=PLAN
EB
C SITE 3 MEASURE 3 = 800000 AC-FT FLOOD STORAGE
88
         200000
RL
      3
                     0 100000 900000 1000000
RO
RS
              0 100000 200000 400000 600000 800000 1000000
```

```
18000
                   21000 30000
                                   40000 100000 300000 500000
R2 99999
           99999
CP
           12000
IDSITE03
                      .1
                             3.2
RT
                                                             5000
DR
M$ 800.
ZR A=FORD B=SITEO4 C=FREQ-FLOW F=PLAN
EB
                                     SITE 4
C SITE 4 MEASURE 1 = EXISTING CONDITIONS
BB
CP
          40000
IDSITE04
RT
EΒ
c _
C SITE 4 MEASURE 2 = CHANNEL IMPROVEMENT
CP
           40000
IDSITE04
RT
QS
       9
           10000
                   20000
                           30000
                                   40000 100000 300000 500000 700000
                                                                           900000
EL
            300
                     350
                             450
                                     500
                                             550
                                                                     650
C$ 40000
                    4000
                            5000
            2000
                                    6000
M$
   25.
ZR A=FORD 8=SITE04 C=FLOW-DAMAGE F=PLAN
EB
DA1
DF
            .999
                    .900
                            .800
                                    .700
                                            .600
                                                    .500
                                                             .400
                                                                     .300
                                                                             .250
   .200
                    .100
                                             .010
                                                    .005
DF
            .150
                             .050
                                    .020
                                                             .002
DQ
           28800
                   35000
                           42000
                                   50500
                                           60500
                                                   73000
                                                            90000
                                                                  114000 130000
                                                  840000 1000000
DQ150000
          180000
                  230000
                                  490000
                                          640000
                          323000
                    170
                                             400
DC1
            100
                             220
                                    300
                                                    520
                                                             750
                                                                    1100
                                                                             1450
DC 1900
            2800
                    4900
                            9800
                                   12200
                                           13320
                                                    14170
                                                            14660
ZR A=FORD B=SITEO4 C=FREQ-FLOW F=BASE
ZR A=FORD B=SITE04 C=FLOW-DAMAGE F=BASE
ΕD
BF
      0
             18
                      0
                               057060610
FC .3 1 1.5
ZWQF A=FORD C=FREQ-FLOW
ZW A=FORD B=ALL CATE C=REACH-EAD
IN
     1 6 JUNE
                    1000
                            200C
                                    3000
                                           18000
                                                   37000
                                                            42000
                                                                    50000
                                                                            27000
IN 20000
          13000
                    5000
                            4000
                                    3000
                                            2000
                                                    1000
                                                            1000
                                                                             1000
                                                                    1000
IN
      2 6 JUNE
                    2000
                            3000
                                    4000
                                            6000
                                                   20000
                                                           57000
                                                                  100000
                                                                            90000
IN 70000
          50000
                   37000
                                   24000
                                           15000
                                                    9000
                           24000
                                                            3000
                                                                             1500
                                                                    2000
      3 6 JUNE
                   3000
IN
                            6000
                                   27000
                                           60000
                                                  105000
                                                            78000
                                                                    60000
                                                                            45000
IN 33000 24000
                   18000
                           12000
                                   12000
                                            9000
                                                    6000
                                                            3000
                                                                    2000
                                                                             1000
         6 JUNE
                    2000
                            4000
                                   19000
                                           13000
                                                    10000
                                                             7000
                                                                     4000
                                                                             1000
IN
    1000
           4000
                   10000
                           25000
                                   13000
                                            7000
                                                    4000
                                                            2000
                                                                    1000
                                                                             500
EJ
ER
```

**** END OF INPUT LISTING ****

BRANCH-AND-BOUND SUMMARY OUTPUT * ******* SYSTEM SUMMARY NUMBER OF SITES IN SYSTEM 4 TOTAL NUMBER OF MEASURES PROPOSED 9 MEASURES PROPOSED AT SITE 1 2 MEASURES PROPOSED AT SITE 2 2 MEASURES PROPOSED AT SITE 3 3 MEASURES PROPOSED AT SITE 4 2 ECONOMIC SUMMARY OF OPTIMUM PLAN THE MAXIMUM OBJECTIVE FUNCTION IS. 789.77 THE OPTIMAL PLAN INCLUDES THE FOLLOWING MEASURES: SITE 1 MEASURE 1 SITE 2 MEASURE 2 SITE 3 MEASURE 2 SITE 4 MEASURE 2 EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 732.24 EXPECTED ANNUAL DAMAGE REDUCTION. 1514.77 TOTAL SYSTEM ANNUAL COST. . 789.77 ************* * INTERMEDIATE OUTPUT OF ALL PLANS ENUMERATED ********** PLAN 1 SITE 1 MEASURE 1 SITE 2 SITE 3 MEASURE 1 MEASURE

SITE 4

MEASURE 1

THE OBJECTIVE FUNCTION IS

0.00

```
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01 EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
TOTAL SYSTEM ANNUAL COST. . . .
                                                        0.00
EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                        0.00
COMPARE
OBJECTIVE FUNCTION ( 0.00) IS GREATER THAN TRIAL OPTIMUM ( -999.00)
SET NEW TRIAL OPTIMUM TO
                               0.00
     EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:
      SITE = 1
                    MEASURE = 1
      BOUND = 1687.51
BOUND ( 1687.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                                     0.00).
FURTHER DIVIDE SUBSET
     EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:
      SITE = 1
                    MEASURE = 1
      SITE = 1 MEASURE = 1
SITE = 2 MEASURE = 1
      BOUND = 1687.51
BOUND ( 1687.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                                      0.00).
FURTHER DIVIDE SUBSET
     EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:
      SITE = 1
                   MEASURE = 1
                    MEASURE = 1
      SITE = 2
      SITE = 3
                   MEASURE = 1
      BOUND = 1128.02
BOUND ( 1128.02) IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 0.00).
FURTHER DIVIDE SUBSET
     PLAN 2
 SITE 1
              MEASURE 1
SITE 2
SITE 3
              MEASURE 1
              MEASURE 1
 SITE 4
              MEASURE 2
THE OBJECTIVE FUNCTION IS . . . . . . . . . . . . .
                                                      3.86
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 2218.15
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
```

EXPECTED ANNUAL SYSTEM NET BENEFITS

28.86

25.00

3.86

SET NEW TRIAL OPTIMUM TO 3.86		
		• • • • • •
N. W. T.		-
PLAN 3		
SITE 1 MEASURE 1		
SITE 2 MEASURE 1 SITE 3 MEASURE 2		
SITE 4 MEASURE 1		
THE OBJECTIVE FUNCTION 1S	. 584.39	
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM		
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM EXPECTED ANNUAL DAMAGE REDUCTION		
TOTAL SYSTEM ANNUAL COST	. 300.00	
EXPECTED ANNUAL SYSTEM NET BENEFITS		
		_
COMPARE		
OBJECTIVE FUNCTION (584.39) IS GREATER THA		3.8
OBJECTIVE FUNCTION (584.39) IS GREATER THA		3.8
OBJECTIVE FUNCTION (584.39) IS GREATER THA	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT FURTHER DIVIDE SUBSET	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1 SITE 3 MEASURE 2 SITE 4 MEASURE 2	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 3 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1 SITE 3 MEASURE 2	N TRIAL OPTIMUM (
OBJECTIVE FUNCTION (584.39) IS GREATER THA SET NEW TRIAL OPTIMUM TO 584.39 EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES: SITE = 1 MEASURE = 1 SITE = 2 MEASURE = 2 BOUND = 1387.51 BOUND (1387.51) IS GREATER THAN TRIAL OBJECT FURTHER DIVIDE SUBSET PLAN 4 SITE 1 MEASURE 1 SITE 2 MEASURE 1 SITE 3 MEASURE 2 SITE 4 MEASURE 2	N TRIAL OPTIMUM (

```
OBJECTIVE FUNCTION ( 624.45) IS GREATER THAN TRIAL OPTIMUM ( 584.39)
    SET NEW TRIAL OPTIMUM TO 624.45
624.45) IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 624.45).
    BOUND (
    FURTHER DIVIDE SUBSET
          PLAN 5
     SITE 1
                   MEASURE 1
     SITE 2
SITE 3
                   MEASURE 1
MEASURE 3
                   MEASURE 1
     SITE 4
    70.65
    EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01 EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 1376.36 EXPECTED ANNUAL DAMAGE REDUCTION . . . . . . . 870.65
    TOTAL SYSTEM ANNUAL COST. . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                         800.00
                                                          70.65
    COMPARE
    OBJECTIVE FUNCTION ( 70.65) IS LESS THAN TRIAL OPTIMUM ( 624.45)
    DO NOT UPDATE TRIAL OPTIMUM
         EVALUATE SUBSET BOUND
    SUBSET INCLUDES THE FOLLOWING SITES:
          SITE = 1
                        MEASURE = 1
          SITE = 2
                       MEASURE - 1
          SITE = 3
                       MEASURE = 3
                     887.51
          BOUND =
    BOUND ( 887.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 624.45).
    FURTHER DIVIDE SUBSET
          PLAN 6
     SITE 1
                  MEASURE 1
     SITE 2
                  MEASURE 1
                  MEASURE 3
MEASURE 2
     SITE 3
     SITE 4
    THE OBJECTIVE FUNCTION IS . . . . . . . . . . . 109.57
    EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                       2247.01
                                                       1312.44
    EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                         934.57
```

```
TOTAL SYSTEM ANNUAL COST. . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . .
                                                           825.00
                                                            109.57
     COMPARE
     OBJECTIVE FUNCTION ( 109.57) IS LESS THAN TRIAL OPTIMUM ( 624.45)
     DO NOT UPDATE TRIAL OPTIMUM
           PLAN 7
      SITE 1
                    MEASURE 1
                    MEASURE 2
      SITE 2
      SITE 3
                    MEASURE 1
      SITE 4
                    MEASURE 1
                                                          709.86
     EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 1137.15
     EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                           1109.86
     TOTAL SYSTEM ANNUAL COST. . . . . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                            400.00
                                                           709.86
     COMPARE
     OBJECTIVE FUNCTION ( 709.86) IS GREATER THAN TRIAL OPTIMUM ( 624.45)
     SET NEW TRIAL OPTIMUM TO 709.86
          EVALUATE SUBSET BOUND
     SUBSET INCLUDES THE FOLLOWING : TES:
                       MEASURE = 1
MEASURE = 2
           SITE = 1
           SITE = 2 MEASO
BOUND = 1287.51
     BOUND ( 1287.51) IS GREATER THAN TRIAL OBJECTIVE FUNCTION ( 709.86).
     FURTHER DIVIDE SUBSET
          EVALUATE SUBSET BOUND
     SUBSET INCLUDES THE FOLLOWING SITES:
                         MEASURE = 1
           SITE = 1
                       MEASURE = 2
           SITE = 2
           SITE = 3
                         MEASURE = 1
           BOUND =
                     328.02
BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET
           PLAN 8
      SITE 1
                    MEASURE 1
      SITE 2
SITE 3
SITE 4
                    MEASURE 2
                    MEASURE 2
```

MEASURE 1

```
682.06
THE OBJECTIVE FUNCTION IS . . . . . . . . . . . .
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                       2247.01
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
TOTAL SYSTEM ANNUAL COST. . . . . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . .
                                                        700.00
                                                        682.06
COMPARE
OBJECTIVE FUNCTION ( 682.06) IS LESS THAN TRIAL OPTIMUM ( 709.86)
DO NOT UPDATE TRIAL OPTIMUM
      PLAN 9
 SITE 1
               MEASURE 1
               MEASURE 2
MEASURE 2
 SITE 2
SITE 3
 SITE 4
               MEASURE 2
THE OBJECTIVE FUNCTION IS . . . . . . . . . . . . .
                                                        789.77
                                                       2247.01
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . .
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                        732.24
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                        725.00
TOTAL SYSTEM ANNUAL COST. . . .
EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . .
                                                        789.77
COMPARE
OBJECTIVE FUNCTION ( 789.77) IS GREATER THAN TRIAL OPTIMUM ( 709.86)
SET NEW TRIAL OPTIMUM TO
                             789.77
      PLAN 10
 SITE 1
               MEASURE 1
 SITE 2
               MEASURE 2
 SITE 3
               MEASURE 3
               MEASURE 1
 SITE 4
EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                       2247.01
                                                        931.84
EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                       1315.17
TOTAL SYSTEM ANNUAL COST. . . . . . . . . . . . . . EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . . .
                                                       1200.00
                                                         115.17
```

```
OBJECTIVE FUNCTION ( 115.17) IS LESS THAN TRIAL OPTIMUM ( 789.77)
    DO NOT UPDATE TRIAL OPTIMUM
         EVALUATE SUBSET BOUND
    SUBSET INCLUDES THE FOLLOWING SITES:
          SITE = 1
                      MEASURE = 1
                      MEASURE = 2
          SITE = 2
          SITE = 3
                      MEASURE = 3
                   487.51
          BOUND =
BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET
         PLAN 11
     SITE 1
SITE 2
                 MEASURE 2
MEASURE 1
                 MEASURE 1
MEASURE 1
     SITE 3
SITE 4
    THE OBJECTIVE FUNCTION IS . . . . . . . . -258.81
    EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . .
                                                   2247.01
    EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . .
                                                   1745.82
    EXPECTED ANNUAL DAMAGE REDUCTION. . . . . . .
                                                    501.19
    COMPARE
    OBJECTIVE FUNCTION ( -258.81) IS LESS THAN TRIAL OPTIMUM ( 789.77)
    DO NOT UPDATE TRIAL OPTIMUM
        EVALUATE SUBSET BOUND
    SUBSET INCLUDES THE FOLLOWING SITES:
         SITE = 1
                     MEASURE = 2
         BOUND = 1045.05
    BOUND ( 1045.05) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                               789.77).
    FURTHER DIVIDE SUBSET
        EVALUATE SUBSET BOUND
    SUBSET INCLUDES THE FOLLOWING SITES:
         SITE = 1
                     MEASURE = 2
         SITE = 2 MEASE
BOUND = 1045.05
                     MEASURE = 1
    BOUND ( 1045.05) IS GREATER THAN TRIAL OBJECTIVE FUNCTION (
                                                               789.77).
    FURTHER DIVIDE SUBSET
```

EVALUATE SUBSET BOUND SUBSET INCLUDES THE FOLLOWING SITES:

BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET

	2 _	
SITE 1	MEASURE 2	
SITE 2	MEASURE 1	
SITE 3	MEASURE 2	
SITE 4	MEASURE 1	
THE OBJECTIVE	E FUNCTION IS 137.57	
EXPECTED ANNI	UAL DAMAGES - EXISTING SYSTEM 2247.01	
	UAL DAMAGES - PROPOSED SYSTEM 1049.44	
EXPECTED ANNI	UAL DAMAGE REDUCTION 1197.57	
TOTAL SYSTEM	ANNUAL COST 1060.00	
	UAL SYSTEM NET BENEFITS 137.57	
COMPARE		
PLAN 13	3	
PLAN 13	3	
	- -	
PLAN 13 SITE 1 SITE 2	3 - MEASURE 2 MEASURE 1	 -
SITE 1	- - Measure 2	
SITE 1 SITE 2	MEASURE 2 MEASURE 1	
SITE 1 SITE 2 SITE 3 SITE 4	MEASURE 2 MEASURE 1 MEASURE 2	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNU	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNU	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNU	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNUE EXPECTED ANNUE EXPECTED ANNUE TOTAL SYSTEM	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNUE EXPECTED ANNUE EXPECTED ANNUE TOTAL SYSTEM	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNU EXPECTED ANNU TOTAL SYSTEM EXPECTED ANNU	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 E FUNCTION IS	
SITE 1 SITE 2 SITE 3 SITE 4 THE OBJECTIVE EXPECTED ANNUEXPECTED ANNUEX	MEASURE 2 MEASURE 1 MEASURE 2 MEASURE 2 MEASURE 2 E FUNCTION IS	789.77

PLAN 14 SITE 1 MEASURE 2 SITE 2 MEASURE 1 SITE 3 MEASURE 3

MEASURE 1

THE OBJECTIVE FUNCTION IS -408.32

EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 1095.33
EXPECTED ANNUAL DAMAGE REDUCTION 1151.68

COMPARE

OBJECTIVE FUNCTION (-408.32) IS LESS THAN TRIAL OPTIMUM (789.77)

DO NOT UPDATE TRIAL OPTIMUM
EVALUATE SUBSET BOUND
SUBSET INCLUDES THE FOLLOWING SITES:

BOUND = 245.05

BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET

PLAN 15

SITE 1 MEASURE 2 SITE 2 M. ASURE 2 SITE 3 MEASURE 1 SITE 4 MEASURE 1

THE OBJECTIVE F NCTION IS 85.05

EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . 2247.01
EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . 1001.96
EXPECTED ANNUAL DAMAGE REDUCTION 1245.05

COMPARE

OBJECTIVE FUNCTION (85.05) IS LESS THAN TRIAL OPTIMUM (789.77)

DO NOT UPDATE TRIAL OPTIMUM

EVALUATE SUBSET BOUND

SUBSET INCLUDES THE FOLLOWING SITES:

BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET ***** END OF BRANCH-AND-BOUND OUTPUT *****

Appendix F

Branch-and-Bound Program Listing

```
PROGRAM BRANCH
       ************************
     C
       * PROGRAM BRANCH-AND-BOUND
     С
     С
       *****************
10
          AUTHOR : TERESA H. BOWEN
11
13
          DESCRIPTION OF SUBROUTINES
15
      * SUBROUTINE
                     * DESCRIPTION
18
    C * BANNER * WRITES OUT BANNER PAGE
C * BBOUT * WRITES SUMMARY OUTPUT TABLE
C * EADIN1 * CREATES A BASE EAD INPUT FILE FROM USER INPUT
C * EADIN2 * CREATES AN EAD INPUT FILE WITH BASE CONDITION
19
20
21
                                   * AND PLAN1
      C * HEC5IN
25
    С
    C * PRE
27
                                   * MEASURES FROM USER INPUT
29
         DEFINITION OF VARIABLES USED IN THIS PROGRAM
   * VARIABLE * DEFIINITON
32
                        *************
33
35
37
38
39
40
42
43
45
46
47
48
                                                                    C** WITH PLAN1
49
51
52
53
54
55
56
57
58
      * TRIOPT
                     * VALUE OF TRIAL OPTIMUM
60
```

```
C DIMENSIONS FOR MAXIMUM LIMITS OF ARRAYS
       64
 65
                         * DIMENSION
                                                  * DIMENSIONED TO
       C
       66
      C * KMEAS * NUMBER OF SITES * MSITE
C * IMEAS * NUMBER OF SITES * MSITE
 67
 68
                          * NUMBER OF SITES
                                                  * MSITE
 69
        * DAMAGE
                                              * MSITE
* MSITE
 70
       C * COST
                          * NUMBER OF SITES
                          * NUMBER OF SITES
 71
       C * ISAVE
         **********************
 72
       C
          * IBR(NUMBER OF RECORDS PER MEASURE, NUMBER OF SITES, NUMBER OF C*MEASURE)
 73
       С
 74
       С
 75
 76
 77
       C
            DESCRIPTION OF UNIT NUMBERS
 78
       С
             ***************
 79
       Ç
           * UNIT * FILE * SUBROUTINE WHICH
* NO. * NAME * CREATES FILE
                                                                             * SUMMARY OF USE
 80
       С
 81
           ***************
 82
       C
           * 6 * STDOUT * -
* 18 * 172 * -
* * *
 83
                                               * STANDARD OUTPUT
       С
                                               * INTERMEDIATE RESULTS FROM
 84
       С
                                              * HEC5A
 85
       С
           * 71 * DSSFILE * -
                                              * STORES DSS PAIRED DATA
 86
           * 110 * - * NONE
* 111 * DATA1 * PRE
           * 110 *
                                              * USER INPUT
 87
      С
                                              * MASTER INPUT OF ALL ALTS.
 88
       С
           * 112 * DATA2 * MAIN
                                               * HEC-5/EAD INPUT OF CURRENT
 89
       C
                                              * PLAN
 90
       С
          * 113 * EADBASE * EADIN1
* 114 * EADPLAN * EADIN2
* 115 * HEC5DATA
                                              * EAD INPUT FOR BASE CONDITION
 91
 92
                                              * EAD INPUT FOR CURRENT PLAN
       C
                                               * HECSIN
                                                                             * HEC-5 INPUT FOR CURRENT
 93
       С
 94
      PLAN
           * 120 * SUMMARY * BBOUT
 95
                                               * SUMMARY OUTPUT
      C
           * 121 * INTER * BRANCH

* 122 * EADINT * BRANCH

* 123 * H5INT * BRANCH
                                              * INTERMEDIATE OUTPUT
                                              * EAD OUTPUT
 97
      C
                                              * HEC5 OUTPUT
 98
      С
 99
100
      С
101
102
      C
103
      С
104
105
      С
106
107
            PARAMETER (MREC=30, MSITE=11, MMEAS=5, MWBUFF=82, MWDATA=300,
108
           .MARYLB=130, MFLTAB=1200, MPLAN=2, MSTATS=8, MHEAD=30)
109
      С
            DIMENSION IMEAS(MSITE), KMEAS(MSITE), DAMAGE(MSITE),
110
111
           .COST(MSITE), ISAVE(MSITE), IFLTAB(MFLTAB), NSTATS(MSTATS),
           .IHEAD(MHEAD), CRCHNM(MSITE), DUMMY(MSITE, MPLAN),
112
            .DATA(MWDATA), IBUFF(MWBUFF), CARYLB(MARYLB),
113
114
            .DAMBAS(MSITE), ISUB(MSITE)
115
      C
116
            COMMON/BR/IBR
117
            COMMON/COUNT/ICNT
            COMMON/SITE/NSITE, NMEAS, NPLAN
118
119
            COMMON/Z/BASEZ,PLANZ
120
            COMMON/ECON/COST, DAMAGE, TSNB, DBASE, SUMC, SUMD, CPLAN, DPLAN
121
            COMMON/OPT/ISAVE, IMEAS, KMEAS
            COMMON/KEEP/SAVOPT, SVCOST, SAVDAM
122
            CHARACTER IFM*10, ITO*30
CHARACTER DSSFIL*17, H51NT*17, EADINT*17, HEC51N*17
123
124
125
            CHARACTER*4 AC
126
            CHARACTER*32 A,B,C,D,E,F
            CHARACTER*80 CARD, ZRCARD, CPATH, BASEZ, PLANZ
CHARACTER*80 IBR(MHEAD, MSITE, MMEAS)
127
128
           CHARACTER CFILE*20, CRCHNM*6, CFNAME*64, CDSSFN*64, C1UNIT*8, .C2UNIT*8, C1TYPE*4, C2TYPE*4, CARYLB*8
129
130
131
            CHARACTER*20 T110, T111, T112, T121, T120, T114
            LOGICAL IF
132
            DATA IFM/'BRANCHX'/
133
            DATA AC/'*ADD'/
134
```

```
135
               DATA ITO/'HEC5, INPUT=DATA2, OUTPUT=0:'/
136
137
        C -----
               CALL ATTACH ( 6, 'OUTPUT', 'STDOUT', ' ', CFILE, ISTAT)
CALL ATTACH ( 110, 'INPUT', 'STDIN', ' ', CFILE, ISTAT)
138
139
               T110=CFILE
140
               CALL ATTACH ( 71, 'DSSFILE', 'SCRATCH36','NOP', DSSFIL, ISTAT)
CALL ATTACH ( 111, 'DATA1', 'DATA1', ', CFILE, ISTAT)
141
142
143
               T111=CFILE
               CALL ATTACH ( 112, 'DATA2', 'DATA2', ' ', CFILE, ISTAT)
144
145
               T112 = CFILE
               CALL ATTACH ( 114, 'EADPLAN', 'EADPLAN', ' ', CFILE, ISTAT)
146
147
               T114 = CFILE
148
               CALL ATTACH ( 120, 'SUMMARY', 'SUMMARY', '', CFILE, ISTAT)
149
               T120 = CFILE
150
               CALL ATTACH ( 121, 'INTER', 'INTER', ' ', CFILE, ISTAT)
151
               T121 = CFILE
               CALL ATTACH ( 122, 'EADINT', 'EADINT', 'NOP', EADINT, ISTAT)
CALL ATTACH ( 123, 'H5INT', 'H5INT', 'NOP', H5INT, ISTAT)
152
153
154
               CALL ATTEND
155
        С
156
               CALL ZSET ('UNIT', ' ', 70)
157
               CALL ZOPEN(IFLTAB, DSSFIL, ISTAT)
               CALL ZSET ('PROG', 'BRCH', 0)
158
159
        С
160
161
        С
               CALL PREPROCESSOR WHICH READS MASTER HEC-5 INPUT FILE AND WRITES
               AN INTERMEDIATE FILE (DATA1) CONTAINING *ADD IN PLACE OF EACH
162
        C
               BLOCK OF DATA DESCRIBING PROPOSED ALTERNATIVE
163
        С
164
        C
165
               CALL PRE(ISUB)
        С
166
                                                                                     * PREBRANCH *
167
        C
168
        C
169
        C
170
               INITIALIZE
        C
        Ċ
171
                                                                                    . INITIALIZE .
172
        C
173
174
               TRIOPT = -999.
               ISITE = 1
175
176
               DO 90 I=1,MSITE
177
               IMEAS(I) = 1
178
               KMEAS(I) = 1
179
           90 CONTINUE
180
               NPLAN=0
181
               KSITE = 1
182
               NSITE=0
183
               ICNT=1
184
               KBOUND=-998
185
186
        C
187
        C
184
        C
               BASE CONDITION (STATUS QUO) IS MEASURE 1 AT EACH SITE AND IS CALLED
189
        C
               PLAN1.
190
        C
191
        C
192
          100 ISITE=1
193
               NPLAN=NPLAN+1
194
               REWIND 111
               REWIND 112
195
          130 READ(111,'(A80)',END=180)CARD
196
               IF(CARD(1:4).NE.AC) THEN
197
198
                  WRITE (112, '(A80)') CARD
199
                  GO TO 130
200
201
               READ(CARD(11:14),'(212)') JSITE, JMEAS
202
          150 IF(JSITE.EQ.ISITE.AND.JMEAS.EQ.IMEAS(ISITE))THEN
                    DO 160 J=1,20
203
                        IF (IBR(J,ISITE,IMEAS(ISITE)).EQ.'EB') GO TO 170 WRITE(112,'(A80)') IBR(J,ISITE,IMEAS(ISITE))
204
205
206
          160
                    CONTINUE
207
          170 ISITE = ISITE + 1
```

```
208
              ELSE
209
              ENDIF
210
               GO TO 130
211
              ENDIF
          180 CONTINUE
212
              NSITE=ISITE-1
213
214
        С
215
              WRITE(3,186) NPLAN
        С
216
217
              DO 185 ISITE=1, NSITE
218
              WRITE(3, 187) ISITE, IMEAS(ISITE)
          185 CONTINUE
219
          186 FORMAT(' THIS IS PLAN ',12)
220
          187 FORMAT(' SITE = ',12, 'MEASURE = ',12)
221
222
               WRITE(121,190) NPLAN
          190 FORMAT(/80('_')/10X,' PLAN ',12,/10X,8('_')/)
223
              DO 195 ISITE=1,NSITE
224
              WRITE(121,198) ISITE, IMEAS(ISITE)
225
          195 CONTINUE
226
          198 FORMAT(5X,' SITE ',12,5X' MEASURE ',12)
227
228
              ISITE = 1
229
230
        С
              THE FIRST MASTER INPUT FILE GENERATED IS THE BASE CONDITION (PLAN1).
231
232
              FOR THIS FIRST ITERATION, CALL EADIN! WHICH CREATES A BASE CONDITION
              EAD FILE (EADBASE) FROM THE MASTER BASE CONDITION FILE (DATA2).
233
        С
234
        С
235
              IF (ICNT.EQ.1) THEN
236
              CALL EADIN1(IHEAD, NSTATS, IFLTAB)
237
        С
                                                                                    * EADIN1 *
238
        С
239
        С
              ELSE
240
241
        С
242
              CALL EADIN2 FOR ALL SUBSEQUENT PLANS.
243
       ε
              THIS SUBROUTINE ADDS ZR RECORDS DESCRIBING CAHNGED FUNCTIONS IN THIS
244
       C
245
              PLAN TO THE BASE EADFILE.
       С
246
       C
247
              WRITE(3,*) 'PROGRAM CALL TO EADIN2'
       С
248
              CALL EADIN2(IHEAD, NSTATS, IFLTAB)
249
                                                                                    *******
       С
250
                                                                                    * EADIN2 *
251
252
253
       С
              ENDIF
254
       С
255
256
       C
257
              REWIND 112
258
       С
              IF THIS IS THE FIRST ITERATION, EXECUTE HEC-5 FOR BASE CONDITION
259
       С
260
       С
              RELATIONSHIPS
261
262
              IF(ICNT.EQ.1)GO TO 400
263
       C
              IF FLOW-FREQUENCY FUNCTION IS MODIFIED AT ANY SITE IN THIS PLAN.
264
       C
              HEC-5 MUST BE EXECUTED. IF NOT, EXECUTE ONLY EAD.
265
       С
266
       С
267
       C
              LOOK FOR A C=FREQ-FLOW PART IN ZR RECORDS IN THE DATA2 FILE.
268
       C
269
       C
270
271
          250 READ(112,'(A80)',END=380) CARD
              IF(CARD(1:2).EQ.'DA')THEN
272
              READ(112,'(A80)',END=380) CARD
273
              READ(112,'(A80)',END=380) CARD
READ(112,'(A80)',END=380) CARD
274
275
              READ(112,'(A80)',END=380) CARD
276
              READ(112,'(A80)',END=380) CARD
READ(112,'(A80)',END=380) CARD
277
278
              READ(112,'(A80)',END~380) CARD
READ(112,'(A80)',END~380) CARD
279
280
```

```
281
              READ(112,'(A80)',END=380) CARD
282
              ENDIF
283
              IF(CARD(1:2).EQ.'ZR')THEN
284
              ZRCARD=CARD
285
       С
              DO 270 I=1,6
286
              NSTATS(1) = -32
287
288
         270 CONTINUE
289
       Ç
290
              CALL ZGPNP (ZRCARD, A, B, C, D, E, F, NSTATS)
291
              IF (NSTATS(1).GE.O) NA = NSTATS(1)
              IF (NSTATS(2).GE.O) NB = NSTATS(2)
292
293
              IF (NSTATS(3).GE.0) NC = NSTATS(3)
294
              IF (NSTATS(4).GE.0) ND = NSTATS(4)
295
              IF (NSTATS(5).GE.0) NE = NSTATS(5)
296
              IF (NSTATS(6).GE.0) NF = NSTATS(6)
297
              CALL CHABLK (CPATH, 1,80)
298
              CALL ZFPN(A,NA,B,NB,C,NC,D,ND,E,NE,F,NF,CPATH,NPATH)
299
              TEST C PART OF EACH ZR RECORD
300
301
              IF A FREQ-FLOW PART IS FOUND GO TO CALL HECSIN TO CREATE AN HEC-5 FILE
302
       C
303
              IF NO FREQ-FLOW PART IS FOUND, READ NEXT ZR RECORD
304
305
         350 IF(C(1:NC).EQ.'FREQ-FLOW')GO TO 399
306
              GO TO 250
307
              ELSE
308
              GO TO 250
309
              ENDIF
310
         380 LONTINUE
311
              GO TO 450
312
313
              IF A FREQ-FLOW PART WAS FOUND, RUN HEC-5
314
       С
              CALL HECSIN WHICH CREATES AN HEC-5 EXECUTABLE INPUT FILE (HECSDATA)
315
316
              FROM THE DATA2 INPUT FILE.
317
318
         399 WRITE(3,*) 'CALL TO HECSIN'
319
          400 CALL HECSIN
320
321
                                                                                   * HEC5IN *
322
323
       С
324
       С
325
326
327
       С
                                                                              . OBJECTIVE
                                                                              . FUNCTION .
328
       С
329
       С
330
331
              WRITE (3,*)' CALLING H5A'
332
       C
              CALL LASTCH ( H5INT, 17, ILAST)
CALL EXPROG('H5A*H5A INPUT=HEC5DATA OUTPUT='//H5INT(1:ILAST)//
333
334
335
             * ' DSSFILE='//DSSFIL)
336
              WRITE (3,*)' CALLING H58'
              CALL LASTCH ( H5INT, 17, JLAST)
337
              CALL EXPROG('H58*H5B INPUT=IT2 OUTPUT=+'//H5INT(1:JLAST)//
338
339
             * ' DSSFILE='//DSSFIL)
340
              CALL ASIGNI ( 6, 3, 0, ISTAT)
341
       C
342
343
              IF NO C=FREQ-FLOW PART WAS FOUND, EXECUTE ONLY EAD
       С
344
        450 CONTINUE
345
              WRITE (3,*)' CALLING EAD'
346
              IF(ICNT.EQ.1)THEN
347
              CALL LASTCH ( EADINT, 17, KLAST)
348
              CALL EXPROG('EAD*EADX INPUT=EADBASE OUTPUT='//EADINT(1:KLAST)/
349
             * ' TAPE71='//DSSFIL)
350
              CALL ASIGNI (6, 3, 0, ISTAT)
351
              ELSE
              CALL LASTCH ( EADINT, 17, KLAST)
CALL EXPROG('EAD*EADX INPUT=EADPLAN OUTPUT='//EADINT(1:KLAST)//
352
353
```

```
* ' TAPE71='//DSSFIL)
354
355
              CALL ASIGNI (6, 3, 0, ISTAT)
356
              ENDIF
357
358
              OPEN FILES 110,111,112,120,121 AGAIN
359
              OPEN(UNIT=110, FILE=T110)
360
361
              CALL WIND(110)
362
              OPEN(UNIT=111, FILE=T111)
363
              CALL WIND(111)
364
              OPEN(UNIT=112, FILE=T112)
365
              CALL WIND(112)
366
              OPEN(UNIT=114, FILE=T114)
367
              CALL WIND(114)
368
              OPEN(UNIT=121, FILE=T121)
369
              CALL WIND(121)
370
              OPEN(UNIT=120, FILE=T120)
371
              CALL WIND(120)
372
373
374
375
376
377
        С
              IF THIS IS THE FIRST ITERATION, READ BASE CONDITION DAMAGES
378
        С
              FROM DSS
379
380
381
              IF(ICNT.EQ.1) THEN
382
              DO 455 I=1,6
383
              NSTATS(I) = -32
384
          455 CONTINUE
385
              CALL ZGPNP (BASEZ, A, B, C, D, E, F, NSTATS)
386
              IF (NSTATS(1).GE.O) NA = NSTATS(1)
387
              IF (NSTATS(2).GE.O) NB = NSTATS(2)
              IF (NSTATS(3).GE.O) NC = NSTATS(3)
388
389
              IF (NSTATS(4).GE.0) ND = NSTATS(4)
390
              IF (NSTATS(5).GE.0) NE = NSTATS(5)
391
              IF (NSTATS(6).GE.O) NF = NSTATS(6)
392
              CALL CHABLK (CPATH, 1,80)
393
              CALL ZFPN(A,NA,B,NB,C,NC,D,ND,E,NE,F,NF,CPATH,NPATH)
394
       С
395
              NARYLB=MARYLB
396
              NWBUFF=MWBUFF
397
              ATACWM=ATACWM
398
              JPLAN≃MPLAN
399
              ICODE=1
       C
400
401
              CALL ZGTPFD(IFLTAB, CPATH, NPATH, NREACH, N1ARY, JPLAN, IHORIZ,
             .C1UNIT, C2UNIT, C1TYPE, C2TYPE, CARYLB, NARYLB, IBUFF, NUBUFF,
402
403
             .DATA, NWDATA, ICODE, ISTAT)
404
       С
405
              DO 457 IRCH=1, NREACH
406
              CALL A4TOCH(DATA(IRCH*2-1),1,6,CRCHNM(IRCH),1)
407
       С
408
              DO 457 IPLN=1, JPLAN
409
              DUMMY(IRCH, IPLN) = DATA((IPLN+1)*NREACH+IRCH)
410
         457 CONTINUE
411
       C
412
413
       C
             CORRECT DAMAGE ARRAY TO INCLUDE SITES WITH ZERO DAMAGES
414
415
              KCOUNT=0
416
              DO 459 I=1, NSITE
417
              IF(ISUB(I).NE.I) THEN
418
              KCOUNT = KCOUNT + 1
419
             DAMAGE(I) = DUMMY(KCOUNT, 1)
420
             ELSE
421
             DAMAGE(I) = 0.
422
             ENDIF
423
         459 CONTINUE
424
       С
425
             DBASE = 0.
426
             DO 460 I=1,NSITE
```

```
427
             DBASE = DBASE + DAMAGE(I)
428
         460 CONTINUE
429
       C
430
              BASE CONDITION DAMAGES ARE NOW CALLED DBASE
       C
431
432
433
434
435
       C
             READ DAMAGES AT EACH SITE WITH CURRENT PLAN IMPLEMENTED
       C
       С
             DO 465 I=1,6
436
             NSTATS(1) = -32
437
         465 CONTINUE
438
439
             CALL ZGPNP (PLANZ, A, B, C, D, E, F, NSTATS)
             IF (NSTATS(1).GE.O) NA = NSTATS(1)
             IF (NSTATS(2).GE.0) NB = NSTATS(2)
440
441
             IF (NSTATS(3).GE.0) NC = NSTATS(3)
442
             IF (NSTATS(4).GE.0) ND = NSTATS(4)
443
444
445
             IF (NSTATS(5).GE.O) NE = NSTATS(5)
             IF (NSTATS(6).GE.O) NF = NSTATS(6)
             CALL CHABLK (CPATH, 1,80)
446
             CALL ZFPN(A,NA,B,NB,C,NC,D,ND,E,NE,F,NF,CPATH,NPATH)
447
       C
448
449
450
             NARYLB=MARYLB
             NWBUFF=MWBUFF
             NWDATA=MWDATA
451
              JPLAN=MPLAN
452
             ICODE=1
453
       С
454
455
             CALL ZGTPFD(IFLTAB, CPATH, NPATH, NREACH, N1ARY, JPLAN, IHORIZ,
             .C1UNIT, C2UNIT, C1TYPE, C2TYPE, CARYLB, NARYLB, IBUFF, NWBUFF,
456
             .DATA, NWDATA, ICODE, ISTAT)
457
       С
458
             DO 470 IRCH=1,NREACH
459
             CALL A4TOCH(DATA(IRCH*2-1), 1, 6, CRCHNM(IRCH), 1)
460
       С
461
             DO 470 IPLN=1, JPLAN
462
             DUMMY(IRCH, IPLN) = DATA((IPLN+1)*NREACH+IRCH)
         470 CONTINUE
463
       С
464
465
             CORRECT DAMAGE ARRAY TO INCLUDE SITES WITH ZERO DAMAGES
       C
466
       С
             JCOUNT=0
467
             DO 475 I=1, NSITE
468
             IF(ISUB(I).NE.I) THEN
469
470
             JCOUNT = JCOUNT + 1
471
             DAMAGE(1) = DUMMY(JCOUNT, 2)
472
             ELSE
473
             DAMAGE(I) = 0.
474
             ENDIF
475
         475 CONTINUE
476
477
478
       С
             DAMAGES FOR THIS PLAN BY SITE ARE NOW IN DAMAGE ARRAY
479
       С
480
       C
481
       C
482
             ENDIF
483
             ICNT=ICNT+1
484
       С
485
             CALL BENEFIT COST SUBROUTINE TO COMPUTE NET BENEFITS
486
       С
487
       C
488
             CALL NETBEN
       C
489
                                                                               * NETBEN *
490
       C
491
       С
492
       C
493
       Ċ
494
495
             OBJFUN=TSNB
             RPLAN=DBASE-DPLAN
496
             WRITE(121,486) OBJFUN
497
         498
             .F10.2//)
       C
499
```

```
WRITE(121,490) DBASE, DPLAN, RPLAN, CPLAN, OBJFUN
500
501
       С
502
       С
503
       С
         490 FORMAT(5X, 'EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . . '
504
            .F10.2./
505
             .5x, EXPECTED ANNUAL DAMAGES - PROPOSED SYSTEM . . . ', F10.2,/
506
             507
508
             .5x, TOTAL SYSTEM ANNUAL COST. .
                                                    ..., F10.2,/
509
             .5x, 'EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . . ', F10.2/
510
            .80('_')/)
511
512
       С
             COMPARE TRIAL OPTIMUM WITH CURRENT OBJECTIVE FUNCTION
513
       С
514
       С
515
                                                                             . COMPARE .
       С
516
       С
517
       С
518
       C.
519
       С
             IF THE NEW OBJECTIVE FUNCTION IS GREATER THAN THE TRIAL
520
       С
             OPTIMUM. SAVE THIS PLAN AS THE POTENTIAL OPTIMAL
521
       ٢
522
       С
523
         495 IF(OBJFUN.GT.TRIOPT) THEN
524
             DO 500 I=1,NSITE
             ISAVE(I)=IMEAS(I)
525
         500 CONTINUE
526
527
             SAVOPT=OBJEUN
528
             SVCOST=CPLAN
529
             SAVDAM=DPLAN
530
             SAVE THE EAD OUTPUT FOR THE POTENTAIL OPTIMAL PLAN AS EADOUT
531
       С
             AND SAVE THE HECS OUTPUT AS HECSOUT
532
       С
533
534
             CLOSE(UNIT=122)
535
             CLOSE (UNIT=123)
             CALL CDELET('EADOUT', IERR)
536
537
             IF(IERR.EQ.O.OR.IERR.EQ.21)THEN
538
             CALL CRENAM(EADINT, 'EADOUT', IERR)
             OPEN(UNIT=122, FILE=EADINT)
539
540
             ELSE
541
             ENDIF
             CALL CDELET('HEC5OUT', IERR)
542
543
             IF(IERR.EQ.O.OR.IERR.EQ.21) THEN
             CALL CRENAM(H5INT, 'HEC5OUT', IERR)
544
545
             OPEN(UNIT=123, FILE=H5INT)
546
             ELSE
547
             ENDIF
548
             ELSE
549
             ENDIF
550
       С
             IF TRIAL OPTIMUM IS LESS THAN OBJECTIVE FUNCTION (TSNB)
551
       С
552
       С
             A BETTER PLAN HAS BEEN IDENTIFIED. SET TRIOPT = OBJFUN.
552
       c
- 4
555
       C
556
         600 IF(TRIOPT.LT.OBJFUN) THEN
557
              WRITE(121,604)
558
             WRITE(121,605)OBJFUN, TRIOPT
559
             TRIOPT=OBJEUN
560
             WRITE(121,610)TRIOPT
561
             ELSE
562
             WRITE(121,604)
             WRITE(121,615)OBJFUN,TRIOPT
563
564
             WRITE(121,620)
565
             ENDIF
         604 FORMAT(/5X,'COMPARE',/)
566
567
         605 FORMAT(/80('.')/5X,'OBJECTIVE FUNCTION (',F10.2,') IS GREATER THAN
            . TRIAL OPTIMUM (',F10.2,')'/)
568
         610 FORMAT(5X, 'SET NEW TRIAL OPTIMUM TO ',F19.2/80('.')/)
569
         615 FORMAT(/80('.')/5X,'OBJECTIVE FUNCTION (',F10.2,') IS LESS THAN TR .IAL OPTIMUM (',F10.2')'/)
570
         620 FORMAT(5X, 'DO NOT UPDATE TRIAL OPTIMUM')
572
```

```
573
        C
 574
        С
 575
        С
               EVALUATE SUBSET BOUND
 576
               IF BOUND WAS PREVIOUSLY COMPUTED, GO TO NEXT D/S SITE
 577
 578
          650 DO 670 I=1,KSITE
 579
               IF(IMEAS(1).EQ.KMEAS(1).AND.KSITE.EQ.KBOUND)GO TO 770
 580
          670 CONTINUE
 581
        С
 582
                                                                                EVALUATE
 583
                                                                           . SUBSET BOUND .
 584
        C
 585
        С
 586
        С
 587
        С
 588
               SUM DAMAGES AND COSTS DOWN TO KSITE
 589
        С
 590
        С
 591
          728 SUMD=0.
 592
 593
               SUMC=0.
 594
               DO 730 K=1,KSITE
 595
                  SUMD = SUMD + DAMAGE(K)
                  SUMC = SUMC + COST(K)
 596
 597
          730 CONTINUE
 598
              DAMAGE(KSITE) = SUMD
 599
               COST(KSITE) = SUMC
600
        Ç
601
               SUBSET BOUND = BASE CONDITION DAMAGES FOR ENTIRE SYSTEM - DAMAGES WITH
        C
602
        С
               MEASURES IMPLEMENTED TO KSITE - COSTS OF MEASURES TO KSITE
 603
604
        С
605
              BOUND = DBASE - SUMD - SUMC
606
        С
607
              KBOUND=KSITE
608
              DO 739 1=1,KSITE
609
               KMEAS(1) = IMEAS(1)
610
          739 CONTINUE
611
        C
          738 IF (KSITE.LT.NSITE)THEN
612
613
               WRITE(121,755)
614
              DO 740 I=1,KSITE
              WRITE(121,757)1, IMEAS(1)
615
616
          740 CONTINUE
617
              WRITE(121,758) BOUND
618
619
          755 FORMAT(10X, 'EVALUATE SUBSET BOUND'/5X, 'SUBSET INCLUDES THE FOLLOWI
620
          .NG S!TES:'/)
757 FORMAT(10X,' SITE =',12,5X,'MEASURE =',12,)
758 FORMAT(10X,' BOUND ='F10.2/)
621
622
623
624
                                                                        . CONSIDER NEXT
625
       С
                                                                        . DOWNSTREAM SITE .
626
        C
627
        С
628
629
630
        C
631
              IF THE SUBSET BOUND IS GREATER THAN THE TRIAL OPTIMUM FURTHER SUBDIVIDE
       C
632
              SUBSET AND CONSIDER NEXT DOWNSTREAM SITE
633
634
       C
635
       C
636
637
          760 IF(BOUND.LE.TRIOPT) THEN
638
              IF(KSITE.LT.NSITE) WRITE(121,775)
639
               GO TO 790
640
641
               ENDIF
642
              WRITE(121,765)BOUND, TRIOPT
643
          765 FORMAT(5x, 'BOUND (', F10.2,') IS GREATER THAN TRIAL OBJECTIVE FUNCTI
             .ON (',F10.2,').'/5x,'FURTHER DIVIDE SUBSET'//)
644
              ISITE = ISITE + 1
```

```
770 KSITE = KSITE + 1
646
647
          775 FORMAT ('BOUND IS LESS THAN TRIAL OPTIMUM. ELIMINATE SUBSET')
648
649
650
       С
              IF THIS IS THE LAST SITE, GO TO MODIFY PLAN
651
652
       С
653
              IF(KSITE.EQ.NSITE) GO TO 800
654
       C
655
       С
              IF THIS IS NOT THE LAST SITE, EVALUATE SUBSET BOUND SUM DAMAGES AND COSTS OF LAST SIMULATION DOWN TO KSITE
656
657
658
659
       С
660
       С
              GO TO 650
661
       С
662
663
664
              IF BOUND IS LESS THAN TRIAL OPTIMUM, ELIMINATE SUBSET
              AND LOOK FOR NEXT MEASURE AT THIS SITE (NEW SUBSET)
665
       С
666
667
       С
668
                                                                        . ELIMINATE SUBSET .
669
       С
670
671
       С
672
              IF THERE IS ANOTHER MEASURE ADD IT
       С
673
674
                                                                             . MODIFY PLAN .
675
676
677
       C
678
          790 CONTINUE
679
680
         800 REWIND 111
681
         805 READ(111, '(A80)', END=810) CARD
              IF(CARD(1:4).NE.AC) GO TO 805
682
683
              READ(CARD(11:14),'(212)') JSITE, JMEAS
684
              IF(JSITE.EQ.KSITE.AND.JMEAS.GT.IMEAS(KSITE)) THEN
685
                 IMEAS(KSITE) = IMEAS(KSITE) + 1
                 GO TO 1000
686
687
                 ELSE
688
              GO TO 805
689
              ENDIF
690
         810 CONTINUE
691
       C
692
       С
693
              IF THERE IS NO OTHER MEASURE, BACTRACK
694
              ELIMINATE MEASURE FOR CURRENT SITE AND RECONSIDER PREVIOUS SITE
695
696
       C
697
       C
698
699
       C
                                                                               . BACKTRACK .
700
       С
701
              IMEAS(KSITE)=1
702
              KSITE = KSITE-1
       С
              IF THERE IS NO SUCH SITE, STOP
703
704
              IF(KSITE.EQ.0) GO IC 1200
705
       С
706
       С
707
708
              IF PREVIOUS SITE EXISTS, GO TO MODIFY PLAN
709
710
       C
711
             GO TO 800
       С
712
713
714
       С
              CHECK FOR COMPLETE PLAN
715
       С
716
       C
              IF THIS IS NOT THE LAST SITE, GO TO NEXT SITE AND ADD FIRST MEASURE
717
       С
718
```

```
719
       С
                                                                       720
       С
721
722
                                                                       .COMPLETE PLAN .
       C
       C
723
       C
724
        1000 IF(ISITE.LT.NSITE) THEN
725
                ISITE = ISITE + 1
726
                GO TO 1000
727
             ELSE
728
             ENDIF
729
       С
730
       C
731
732
       C
       Ċ
733
734
735
736
       C
             IF THIS IS THE LAST SITE COMPLETE PLAN HAS BEEN FORMULATED
             EVALUATE SYSTEM OBJECTIVE FUNCTION
             IF(ISITE.EQ.NSITE) GO TO 100
       0000
737
                                                                          . TERMINATE .
738
739
740
       C
741
       ε
742
        1200 CALL BANNER
743
       С
744
             CALL BBOUT
745
             CLOSE(UNIT=111)
746
             CLOSE (UNIT=110)
747
             CLOSE (UNIT=112)
748
             CLOSE (UNIT=114)
749
             CLOSE(UNIT=120)
750
             CLOSE (UNIT=121)
751
             CLOSE (UNIT=122)
752
             CLOSE (UNIT=123)
753
             CALL ZCLOSE(IFLTAB)
        6000 STOP
754
755
             END
756
             SUBROUTINE BANNER
757
       C ***
758
       c *
759
       C *
             SUBROUTINE BANNER : WRITE OUT BANNER PAGE
760
       761
762
       C
763
             CHARACTER*80 CARD
764
             REWIND 120
765
             WRITE(120,10)
          10 FORMAT ('1',55('*'),38x,38('*')/
766
            .1X, /* BRANCH-AND-BOUND ENUMERATION PROGRAM
767
                                                                       *',38x,
768
            769
            .1x, " VERSION OF OCTOBER 1986
                                                                       *1,38X,
770
            .'* THE HYDROLOGIC ENGINEERING CENTER *'/
771
                                                                       *1,38X,
772
            . '* 609 SECOND STREET
773
                                                                       *',38x,
774
               DAVIS, CALIFORNIA 95616-4687
                                                   *11
           1x,'*
.'* (916) 440-2105 (FTS) 448-2105
.1x,55('*'),38x,38('*') //////)
775
                                                                       *',38x,
776
                                                  *1/
777
778
      С
779
             ₩RITE(120,20)
          20 FORMAT(
780
781
            .34x,54HBBBBBBB
                              RRRRRRRR
                                                                  CCCCCCC
782
            . 10H
                         H/
783
            .34X,54HB
784
            .10H
                         H/
785
            .34X,54HB
                         В
                             R
                                     R
                                                                С
786
            .10H
787
            .34х,54нвававав
                             RRRRRRRR
                                           AAAAAA
                                                                С
788
            .104 нининии/
789
            .34X,54HB
                         B
                                                                C
790
            .10H
                         H/
            .34X,54HB
791
                         В
                                                            NN
                                                                  C
```

```
722
             .10H
                   Н
 795
794
             .34x,54H8BBBBBB
                                                                    CCCCCCC
             .10H
                   н
                          H/)
 795
 796
              WRITE HEADING FOR BRANCH-AND-BOUND PROGRAM
 797
              WRITE(120,35)
           35 FORMAT('1', 41('+')/,
 798
             .1X,'+ BRANCH-AND-BOUND ENUMERATION PROGRAM +'/
.1X,'+ VERSION DATE: OCTOBER 31, 1986 +'/
 799
800
                                        OCTOBER 31, 1986 +1/
             .1x,41('+')////
801
802
             .1x, '***** INPUT LISTING *****///)
803
              WRITE INPUT LISTING TO OUTPUT
804
        С
805
806
              REWIND 110
          100 READ(110,110,END=105) CARD
807
808
              WRITE(120,112) CARD
809
              GO TO 100
810
          105 CONTINUE
          110 FORMAT(A80)
811
          112 FORMAT(1X,A80)
812
813
              WRITE(120,200)
814
          200 FORMAT(///***** END OF INPUT LISTING *****/)
815
              RETURN
816
              FND
817
              SUBROUTINE BBOUT
818
       C *******************
819
       C *
820
       C *
821
                SUBROUTINE BBOUT : PRINTS SUMMARY OUTPUT TABLE
       c *
822
       823
824
825
826
             PARAMETER (MSITE=11)
827
             COMMON/SITE/NSITE, NMEAS, NPLAN
             COMMON/ECON/COST, DAMAGE, TSNB, DBASE, SUMC, SUMD, CPLAN, DPI AN
828
829
              COMMON/OPT/ISAVE, IMEAS, KMEAS
830
              COMMON/KEEP/SAVOPT, SVCOST, SAVDAM
831
              COMMON/TABLE/NPRINT
832
             CHARACTER*80 CARD, POUT
833
             DIMENSION COST(MSITE), DAMAGE(MSITE), ISAVE(MSITE),
834
             .IMEAS(MSITE), KMEAS(MSITE), NUMBER(MSITE)
835
836
       C ----
             COUNT NUMBER OF MEASURES AT EACH SITE AND TOTAL NUMBER OF PROPOSED
837
       C
838
       С
             MEASURES
839
       С
840
             REWIND 111
841
             DO 50 ISITE=1,NSITE
             NUMBER(ISITE)=0
842
843
          50 CONTINUE
844
             ISITE=1
845
             NMEAS=0
          70 READ(111, '(A80)', END=80)CARD
246
847
             IF(CARD(1:2).EQ. '*A')THEN
848
             READ(CARD(11:14),'(212)')ISITE, IMEAS(ISITE)
849
             NUHBER(ISITE) = NUMBER(ISITE) + 1
850
             NMEAS = NMEAS +1
851
             ELSE
852
             ENDIF
853
             GO TO 70
854
          80 CONTINUE
855
             REDUCE = DBASE - SAVDAM
         WRITE(120,200)
100 WRITE(120,220) NSITE,NMEAS
856
857
858
             DO 130 ISITE=1,NSITE
859
             WRITE(120,240) ISITE, NUMBER(ISITE)
860
         130 CONTINUE
861
             WRITE(120,250) NPLAN
             WRITE(120,260) SAVOPT
862
863
             DO 150 I=1, NSITE
             WRITE(120,280)1, ISAVE(1)
864
```

```
150 CONTINUE
865
           160 WRITE(120,300) DBASE, SAVDAM, REDUCE, SVCOST, SAYOPT
866
          200 FORMAT('11,///15x,37('*')/15x,('*'),35x,('*')/15x,
.'* BRANCH-AND-BOUND SUMMARY OUTPUT *'/15x,('*'),35X('*')/
867
868
              .15x,37('*'))
869
          220 FORMAT(///5x,'SYSTEM SUMMARY'/5x,14('_')//
870
871
              .5x, 'NUMBER OF SITES IN SYSTEM . .
              .5X, TOTAL NUMBER OF MEASURES PROPOSED . . . . ', 12//)
872
          240 FORMAT(10X, MEASURES PROPOSED AT SITE ',12,' . . . ',12/)
250 FORMAT(5x, NUMBER OF PLANS ENUMERATED. . . . . . . ',12)
873
874
          260 FORMAT(///5X, 'ECONOMIC SUMMARY OF OPTIMUM PLAN'/5X,32('_')//
.5x, 'THE MAXIMUM OBJECTIVE FUNCTION IS....', F10.2//
875
876
877
              .5x, THE OPTIMAL PLAN INCLUDES THE FOLLOWING MEASURES : //)
          280 FORMAT(7X, SITE ',12,5X, MEASURE ',12/)
300 FORMAT(5X, EXPECTED ANNUAL DAMAGES - EXISTING SYSTEM . . .
878
879
880
              .F10.2./
              .5x, 'expected annual damages - proposed system . . .', F10.2,/
881
882
              .5X, TOTAL SYSTEM ANNUAL COST. . . . . . . . . . . . . . . , F10.2,/
883
              .5x, 'EXPECTED ANNUAL SYSTEM NET BENEFITS . . . . . . ', F10.2, )
884
885
          310 IF(NPRINT.EQ.2)THEN
              WRITE(120,380)
886
887
               REWIND 121
888
          320 READ(121, '(A80)', END=350)POUT
               WRITE(120,355)POUT
889
890
               GO TO 320
891
              ENDIF
892
          350 CONTINUE
893
               WRITE(120,390)
          355 FORMAT(1X,A80)
894
          380 FORMAT('1',//6X,50('*')/6X,('*'),48X,('*'),/6X,('*'),
895
             .' INTERMEDIATE OUTPUT OF ALL PLANS ENUMERATED ',2X,('*')/
896
897
              .6x,('*'),48x,('*'),/6x,50('*')/)
898
          390 FORMAT(5X, '**** END OF BRANCH-AND-BOUND OUTPUT *****', /'1')
899
900
        С
901
               RETURN
902
903
               SUBROUTINE EADIN1(
              .IHEAD, NSTATS, IFLTAB)
904
        C ***
905
       c *
906
       C *
907
              EADIN1 : READS THE MASTER INPUT FILE FOR THE BASE CONDITION
908
              PLAN AND CREATES A BASE EAD FILE (EADBASE) AND WRITES BASE CONDITION
909
              FLOW-FREQUENCY CURVES TO DSS
910
              THIS ROUTINE READS FROM TAPE12 (DATA2) AND WRITES TO TAPE113 (EADBASE)
911
912
913
914
915
916
917
918
        C
919
              PARAMETER(MFRACT=18, MREC=30, MSITE=11, MMEAS=5)
              DIMENSION IDS(6), JDS(6)
920
921
              DIMENSION OF(40), OD(40)
922
              DIMENSION IHEAD(*), NSTATS(*), IFLTAB(*),
             .FRACT(MFRACT), WHOLE(MFRACT)
COMMON/Z/BASEZ,PLANZ
923
924
925
              COMMON/SITE/NSITE, NMEAS, NPLAN
926
               COMMON/BR/IBR
927
              CHARACTER*80 IBR(MREC, MSITE, MMEAS)
              CHARACTER*32 A,B,C,D,E,F
928
              CHARACTER*3 IDS
929
930
              CHARACTER*3 JDS
931
               CHARACTER*80 CPATH, ZRCARD, BASEZ, PLANZ
932
              CHARACTER*80 TCARD, CARD, ZR, ZW, ZWQF
              CHARACTER*8 TMPFR
933
              CHARACTER*6 TMPRN
934
935
              LOGICAL IF
936
              LOGICAL RDZR
              DATA IDS/'T1','T2','T3','ID','DF','ZR'/
```

```
DATA JDS/'TT','TT','TT','RN','FR','ZR'/
 939
 940
 941
               OPEN(UNIT=113, FILE='EADBASE')
               REWIND 112
 942
 943
               RDZR = .FALSE.
 944
          100 READ (112, '(A80)', END=647) CARD
 945
               READ T1.T2.T3, ID.ZR AND DF RECORDS FROM HEC-5 AND CREATE TT, CN, RN
 946
        C
 947
               ZR AND FR RECORDS FOR EAD
 948
        C
              DO 440 K=1,6
IF(CARD(1:2).NE.IDS(K)) GO TO 440
 949
 950
 951
               CARD(1:2)=JDS(K)
 952
               MULTIPLY FREQUENCIES ON FR RECORD BY 100 (CONVERT FROM DECIMAL FORM TO
 953
 954
        C
               WHOLE NUMBER)
 955
               IF(CARD(1:2).EQ.'RN')THEN
 956
 957
               TMPRN=CARD(3:8)
 958
               GO TO 100
               ENDIF
 959
 960
               [F(CARD(1:2).EQ.'FR')THEN
 961
               READ(CARD(3:8),'(16)') M
 962
               IF(M.EQ.19) M=18
 963
               IF(M.LE.9)THEN
 964
               READ(CARD, '(8x,9F8.0)') (FRACT(1), I=1, M)
 965
               FLSE
               TECH FO. 10) THEN
 966
               READ(CARD, (8X,9F8.0)') (FRACT(1),1=1,9)
READ(112, (480)', END=440)CARD
 967
 968
               READ(CARD, '(2X, F6.0)') FRACT(10)
 969
 970
               ELSE
 971
               READ(CARD, '(8X,9F8.0)') (FRACT(1), I=1,9)
 972
               READ(112, '(A80)', END=440)CARD
 973
               READ(CARD, '(2x, F6.0, 8F8.0)')(FRACT(1), I=10, M)
974
975
               ENDIF
976
              DO 435 I=1,M
 977
               WHOLE(1)=FRACT(1)*100
978
          435 CONTINUE
979
               IF(M.LE.8)THEN
              IF(ROZR) WRITE(113,'(2HER)')
WRITE(113,'(2HRN,A6)')TMPRN
WRITE(113,'(2HFR,A6,18,8F8.2)')TMPRN,M,(WHOLE(I),I=1,M)
980
981
982
983
               FLSE
984
               IF(ROZR) WRITE(113,'(2HER)')
985
               WRITE(113,'(2HRN, A6)')TMPRN
986
               IF(M.EQ.9)THEN
987
               WRITE(113,'(2HFR,A6,18,8F8.2)') TMPRN,M,(WHOLE(1),I=1,8)
 988
               WRITE(113,'(2HFR, F6.2)') WHOLE(9)
 989
               ELSE
990
               WRITE(113,'(2HFR,A6,18,8F8.2)') TMPRN,M,(WHOLE(I),I≈1,8)
               WRITE(113,'(2HFR, F6.2, 8F8.2)') (WHOLE(1), 1=9, M)
991
992
               ENDIF
993
              ENDIF
994
              FLSE
995
               WRITE(113,'(A80)')CARD
996
               IF(K.EQ.3) WRITE(113,445)
997
               IF(CARD(1:2).EQ.'ZR') RDZR=.TRUE.
998
               ENDIF
999
               IF(CARD(1:2).EQ.'ZR') RDZR=.TRUE.
1000
               GO TO 100
1001
          440 CONTINUE
              GO TO 100
1002
1003
          447 CONTINUE
1004
          4/5 FORMAT( 'CN
                              1ALL CATE // PN
                                                  1 BASE CONDITION')
1005
        С
        c ----
                    1006
              BEGIN WRITE TO DIS
1007
        С
1008
        С
              BASE CONDITION FLOW-FREQUENCY WAS WRITTEN TO DSS BY HECS
1009
        C
1010
        C
```

```
WRITE BASE CONDITION FLOW-DAMAGE RELATIONSHIP TO DSS
1011
                FIRST, WRITE FLOWS INTO QD ARRAY
1012
1013
1014
                REWIND 112
           480 READ(112,'(A80)',END=970) CARD
1015
                IF(CARD(1:2).EQ.'DQ') GO TO 500
1016
1017
                GO TO 480
1018
           500 READ(CARD, '(2X, 16)')M
1019
                IF(M.LE.9)THEN
                READ(CARD, '(8X,9F8.0)') (QD(I), I=1,M)
1020
1021
                ELSEIF(M.EQ.10)THEN
                READ(CARD, '(8X,9F8.0)') (QD(1), I=1,9)
READ(112, '(A80)', END=970) CARD
1022
1023
1024
                READ(CARD, '(2X, F6.0)') QD(10)
1025
                READ(CARD, '(8X,9F8.0)') (QD(1), I=1,9)
READ(112, '(A80)', END=970)CARD
1026
1027
                READ(CARD, '(2X, FG. 0, 9F8. 0)') (QD(I), I=10, M)
1028
1029
                ENDIF
1030
         С
1031
         С
1032
         С
1033
                ADD DAMAGES FROM DC RECORD.
1034
                READ(112,'(A80)',END=970) CARD
1035
                IF(M.LE.9) THEN
1036
                READ(CARD, '(8X,9F8.0)') (QD(I), I=M+1, M+M)
1037
1038
                ELSEIF(M.EQ.10) THEN
1039
                READ(CARD, '(8X, 9F8.0)') (QD(I), I=11, 19)
                READ(112.'(A80)'.END=970) CARD
1040
                READ(CARD, '(2X, F6.0)') QD(20)
1041
1042
                ELSE
1043
                READ(CARD, '(8X,9F8.0)') (QD(1), I=M+1, M+9)
                READ(112,'(A80)', END=970) CARD
1044
1045
                READ(CARD, '(2X, F6.0, 9F8.0)') (QD(I), I=M+10, 35)
                ENDIF
1046
1047
         С
1048
         С
                LOOK FOR PATH NAME PARTS ON FIRST ZR RECORD
1049
         С
1050
         С
           600 READ(112,'(A80)',END=970)CARD
1051
                IF(CARD(1:2).EQ.'ZR') THEN
1052
1053
                ZRCARD=CARD
1054
         C
1055
                DO 800 I=1,6
1056
                NSTATS(I) = -32
1057
          800 CONTINUE
1058
         С
1059
                CALL ZGPNP(ZRCARD, A, B, C, D, E, F, NSTATS)
                IF (NSTATS(1).GE.O) MA = NSTATS(1)
1060
1061
                IF (NSTATS(2).GE.0) NB = NSTATS(2)
1062
                IF (NSTATS(3).GE.0) NC = NSTATS(3)
1063
                IF (NSTATS(4).GE.0) ND = NSTATS(4)
                IF (NSTATS(5).GE.O) NE = NSTATS(5)
1064
1065
                IF (NSTATS(6).GE.0) NF = NSTATS(6)
1066
1067
         C
1068
                IF THE C PATH NAME IS FLOW-DAMAGE, WRITE TO DSS
         C
1069
         C
                IF THE C PATH NAME IS NOT, READ NEXT CARD ZRCARD
1070
         C
1071
                IF(C(1:NC).NE.'FLOW-DAMAGE')GO TO 600
1072
         C
1073
                IHEAD(1)=2
1074
                IHEAD(2)=30
1075
                IHEAD(3)=M
1076
                [HEAD(4)=1
1077
                [HEAD(5)=1
1078
                IHEAD(6)=1
1079
                CALL CHABLK(CPATH, 1,80)
1080
                CALL ZFPN(A,NA,B,NB,C,NC,D,ND,E,NE,F,NF,CPATH,NPATH)
               CALL CHTOA4('CFS ',1,8,1HEAD(7),1)
CALL CHTOA4('DOLLARS ',1,8,1HEAD(11),1)
CALL CHRHOL('UNT ',1,4,1HEAD(15),1)
1081
1082
1083
```

```
1084
                CALL CHRHOL('UNT ',1,4,1HEAD(12),1)
 1085
                NDATA=M*4
 1086
                CALL ZWRITE(IFLTAB, CPATH, NPATH, IHEAD, 30, QD, NDATA, O, LF)
 1087
         С
 1088
                ENDIF
 1089
                GO TO 480
           970 CONTINUE
 1090
 1091
         С
 1092
 1093
         С
                WRITE TO DSS IS COMPLETE
         c ---
 1094
 1095
         C
 1096
         C
 1097
         С
                READ ZW RECORDS
 1098
         С
 1099
                REWIND 112
 1100
           980 READ(112,'(A80)',END=1000)CARD
               IF(CARD(1:3).EQ.'ZW ')THEN
 1101
 1102
                CALL LASTCH(CARD, 80, ILAST)
 1103
                ILAST = ILAST + 2
 1104
                CARD(ILAST:) = 'F=BASE'
               WRITE(113, '(A80)')CARD
 1105
 1106
               BASEZ=CARD
               GO TO 1100
 1107
 1108
               ELSE
 1109
               GO TO 980
 1110
               ENDIF
 1111
          1000 CONTINUE
 1112
 1113
          1100 WRITE(113,1200)
 1114
          1200 FORMAT('EJ')
 1115
               CLOSE (UNIT=113)
          1999 RETURN
 1116
 1117
               FND
         С
 1118
 1119
               SUBROUTINE EADIN2(
        .IHEAD, NSTATS, IFLTAB)
1120
1121
         C *
1122
         C *
1123
                            ADDS DSS PATH NAMES FOR THE CURRENT PLAN TO THE BASE
         C *
1124
               EAD FILE, CREATING EADPLAN AND PUTS COSTS OF MEASURES IN THIS
1125
         C *
               PLAN (M$ RECORDS) INTO COST ARRAY
1126
         C *
         c *
1127
               SUBROUTINE READS FROM TAPE112 (DATA2) AND TAPE113 (EADBASE) AND WRITES TO*
         C *
1128
               TAPE114 (EADPLAN)
         C *
1129
1130
1131
1132
         C --
1133
        С
1134
        С
1135
               PARAMETER(MREC=30, MSITE=11, MMEAS=5)
1136
               COMMON/BR/IBR
1137
               COMMON/Z/BASEZ, PLANZ
1138
               COMMON/SITE/NSITE, NMEAS, NPLAN
1139
               COMMON/ECON/COST, DAMAGE, TSNB, DBASE, SUMC, SUMD, CPLAN, DPLAN
1140
               CHARACTER*80 IBR(MREC, MSITE, MMEAS)
               CHARACTER*80 CARD, ZWQF, ZW, BASEZ, PLANZ, ZRPLAN, CPATH, ZROLD
1141
               CHARACTER*6 RNSAVE, BSAVE
1142
               CHARACTER*32 A,B,C,D,E,F
1143
1144
              DIMENSION COST(MSITE), DAMAGE(MSITE), IFLTAB(*),
1145
              .IHEAD(*), NSTATS(*)
1146
              LOGICAL ICHECK
1147
        С
1148
1140
              OPEN(UNIT=114, FILE='EADPLAN')
1150
              OPEN(UNIT=113, FILE='EADBASE')
1151
              REWIND 113
1152
              REWIND 114
              DO 50 K=1,NSITE
1153
1154
              COST(K)=0.
1155
           50 CONTINUE
1156
        С
```

```
1157
        C
1158
               LCOUNT=0
1159
               ICOST=1
           100 READ(113, '(A80)', END=200)CARD
1160
1161
               LCOUNT=LCOUNT+1
1162
               IF(LCOUNT.EQ.1) ZROLD =CARD
1163
               IF(CARD(1:2).EQ.'EJ') GO TO 370
               IF(CARD(1:2),NE.'ER',AND.CARD(1:3),NE.'ZW ')WRITE(114,'(A80)')CARD
1164
               IF(CARD(1:2).EQ.'PN')THEN
1165
1166
               WRITE(114,250) NPLAN
1167
               ELSE
1168
               ENDIF
1169
               IF(CARD(1:2).EQ.'RN') THEN
               READ(CARD(3:8), '(A6)') RNSAVE
1170
1171
        С
1172
               ENDIF
               IF(CARD(1:2).EQ.'ER'.OR.CARD(1:2).EQ.'ZW') GO TO 280
1173
1174
               LOOK FOR ZR RECORDS FOR PROPOSED PLAN IN CURRENT
1175
               DATA2 FILE AND ADD TO EADPLAN
1176
               GO TO 100
1177
           200 CONTINUE
1178
1179
           250 FORMAT('PN
                                2 PLAN', [2)
1180
           280 REWIND 112
               ICHECK=.TRUE.
1181
1182
        С
               SKIP ZR RECORDS FOR BASE CONDITIONS (THEY OCCUR AFTER THE DA RECORD)
1183
        С
1184
           300 READ(112, '(A80)', END=360)CARD
1185
               IF(CARD(1:2).EQ.'DA')THEN
1186
               READ(112,'(A80)',END=400)CARD
READ(112,'(A80)',END=400)CARD
READ(112,'(A80)',END=400)CARD
1187
1188
1189
               READ(112,'(A80)',END=400)CARD
READ(112,'(A80)',END=400)CARD
1190
1191
               READ(112,'(A80)',END=400)CARD
READ(112,'(A80)',END=400)CARD
1192
1193
               READ(112, '(A80)', END=400) CARD
1194
1195
               READ(112,'(A80)', END=400)CARD
1196
               ELSE
1197
               ENDIF
1198
1199
               READ B PART OF EACH ZR RECORD FOR THE PLAN (THESE OCCUR BEFORE THE
        С
1200
        С
               DA RECORD
1201
               IF(CARD(1:2).EQ.'ZR')THEN
1202
1203
               ZRPLAN=CARD
1204
               DO 315 I=1,6
1205
               NSTATS(I) = -32
          315 CONTINUE
1206
               CALL ZGPNP (ZRPLAN, A, B, C, D, E, F, NSTATS)
1207
1208
               IF (NSTATS(1).GE.O) NA = NSTATS(1)
1209
               IF (NSTATS(2).GE.O) NB = NSTATS(2)
1210
               IF (NSTATS(3).GE.0) NC = NSTATS(3)
               IF (NSTATS(4).GE.O) ND = NSTATS(4)
1211
1212
               IF (NSTATS(5).GE.O) NE = NSTATS(5)
1213
               IF (NSTATS(6).GE.0) NF = NSTATS(6)
1214
               CALL CHABLK (CPATH, 1,80)
1215
               CALL ZFPN(A, NA, B, NB, C, NC, D, ND, E, NE, F, NF, CPATH, NPATH)
1216
        C
1217
               TEST B PART OF EACH ZR RECORD
1218
1219
               ADD ZR RECORD TO EADPLAN AT THE SAME SITE
        С
1220
          350 BSAVE≈ B(1:NB)
1221
1222
               IF (BSAVE.EQ.RNSAVE) THEN
1223
               IF (ICHECK) THEN
1224
               WRITE(114, '(2HEP)')
1225
               ICHECK=.FALSE.
               IF(ZROLD.NE.ZRPLAN) WRITE(114, '(A80)') ZRPLAN
1226
1227
               IF(ZROLD.NE.ZRPLAN) WRITE(114, '(A80)') ZRPLAN
1228
1229
               ENDIF
```

```
1230
              ZROLD=ZRPLAN
1231
              ENDIF
1232
              ENDIF
1233
              IF(CARD(1:2).EQ.'ED') THEN
              WRITE(114, '(2HER)')
1234
1235
              GO TO 100
              ENDIF
1236
              GO TO 300
1237
          360 CONTINUE
1238
1239
              GO TO 100
1240
1241
1242
              LOOK FOR M$ RECORDS IN DATA2 AND PUT INTO COST ARRAY
        С
1243
          365 WRITE(114,'(A80)') CARD
1244
          370 REWIND 112
          375 READ(112,'(A80)',END=400)CARD IF(CARD(1:2).EQ.'M$')THEN
1245
1246
              READ(CARD, '(2X, F6.0)') COST(ICOST)
1247
1248
              ICOST=ICOST+1
1249
              ENDIF
              IF(CARD(1:3).EQ.'ZW ')THEN
1250
1251
              CALL LASTCH(CARD, 80, ILAST)
1253
              ILAST = ILAST + 2
1253
              CARD(ILAST:) = 'F=PLAN'
              PLANZ=CARD
1254
              WRITE(114,'(A80)')CARD
WRITE(114,'(2HEJ)')
1255
1256
1257
              ENDIF
1258
              GO TO 375
          400 CONTINUE
1259
          420 CLOSE(UNIT=113)
1260
1261
              CLOSE (UNIT=114)
1262
              RETURN
1263
              END
              SUBROUTINE HECSIN
1264
1265
        C
        1266
        C *
1267
        C *
1268
             HECSIN :
                             WRITES AN HEC-5 INPUT FILE FROM THE DATA2 FILE
        C *
1269
        C *
1270
              SUBROUTINE READS FROM TAPE 112 (DATA2) AND WRITES TO TAPE 115 (HEC5DATA)
        c *
1271
        C ***
1272
1273
        С
1274
        C ---
1275
        C
              CHARACTER*80 CARD, ZW
1276
1277
              COMMON/COUNT/ICNT
1278
              DATA IZR /'ZR'/
              OPEN(UNIT=115, FILE='HEC5DATA')
1279
1280
        С
        c .....
1281
1282
              REWIND 112
1283
              REWIND 115
          100 READ(112,'(A80)',END=30G)CARD IF(CARD(1:4).EQ.'ZWQF')THEN
1284
1285
              CALL LASTCH(CARD, 80, ILAST)
1286
1287
              ILAST=ILAST+2
1288
              IF(ICNT.EQ.1.) CARD(ILAST:)='F=BASE'
1289
              IF(ICNT.GT.1) CARD(ILAST:)='F=PLAN'
1290
              END1F
1291
              IF(CARD(1:2).NE.'ZR'.AND.CARD(1:4).NE.'ZW'.AND.CARD(1:2).NE.
1292
             .'M$')THEN
1293
              WRITE(115, '(A80)')CARD
1294
              ENDIF
1295
              GO TO 100
          300 CONTINUE
1296
1297
              CLOSE(UNIT=115)
1298
          999 RETURN
1299
              END
1300
              SUBROUTINE NETBEN
1301
1302
```

```
1303
        C *
               SUBROUTINE NETBEN : COMPUTES NET BENEFITS
1304
        C *
                 TOTAL SYSTEM
        C *
1305
                 NET BENEFITS = BASE CONDITION DAMAGES - COSTS - DAMAGES WITH PLAN
        C *
                 TSNB = DBASE - CPLAN - DPLAN
1306
        C **
1307
1308
        C
1309
        С
1310
              PARAMETER (MSITE=11)
1311
              COMMON/ECON/COST, DAMAGE, TSNB, DBASE, SUMC, SUMD, CPLAN, DPLAN
              COMMON/SITE/NSITE, NMEAS, NPLAN
1312
1313
             DIMENSION COST(MSITE), DAMAGE(MSITE)
1314
        С
1315
        С
1316
1317
             SUM COSTS AND DAMAGES FOR ALL SITES FOR CURRENT PLAN
        С
1318
        С
             CPLAN=0.
1319
1320
             DPLAN=0.
        C
1321
1322
             DO 100 I=1,NSITE
1323
             CPLAN = CPLAN + COST(I)
1324
             DPLAN = DPLAN + DAMAGE(I)
          100 CONTINUE
1325
1326
        C
1327
        С
1328
             TSNB = DBASE - CPLAN - DPLAN
1329
        C
          999 RETURN
1330
1331
             END
1332
             SUBROUTINE PRE(
1333
             .ISUB)
        C *******
1334
       C *
1335
        C *
1336
                      : PROCESSES A MASTER HEC-5 INPUT FILE INTO AN INTERMEDIATE
        C *
1337
                 FILE (CALLED DATA1)
1338
                 THE DATA1 FILE HAS A *ADD RECORD IN PLACE OF EACH BLOCK OF DATA
1339
        C *
                DESCRIBING PROPOSED ALTERNATIVES.
        C *
1340
        C *
1341
        C *
1342
                SUBROUTINE READS USER INPUT AND WRITES TAPE 111 (DATA1).
1343
        C *
        1344
1345
        С
1346
        C ---
             PARAMETER(MREC=30, MSITE=11, MMEAS=5)
1347
1348
             COMMON/SITE/NSITE, NMEAS, NPLAN
1349
             COMMON/BR/IBR
1350
             COMMON/Z/BASEZ, PLANZ
             COMMON/TABLE/NPRINT
1351
1352
             CHARACTER*2 BBC, EBC, ERC
1353
             CHARACTER*80 CARD, BASEZ, PLANZ
             CHARACTER*80 IBR(MREC, MSITE, MMEAS)
1354
1355
             DIMENSION ISUB(MSITE)
1356
             LOGICAL BLK
1357
             DATA BBC/'BB'/, EBC/'EB'/, ERC/'ER'/
1358
       c ....
1359
1360
       С
1361
       С
             INITIALIZE VARIABLES
1362
       C
1363
             BLK = .FALSE.
1364
             NOUT=0
1365
       С
1366
       С
1367
          100 READ(110,105,END=720) CARD
1368
          105 FORMAT(A80)
1369
1370
1371
1372
         200 IF (CARD(1:2).EQ.BBC) THEN
1373
             READ (CARD(3:8),'(16)') ISITE
1374
             READ (CARD(9:16),'(18)') IMEAS
1375
             ICARD = 0
```

```
1376
               BLK = .TRUE.
               NOUT=NOUT+1
1377
               IF (NOUT.EQ.1) READ(CARD(79:80),'(12)') NPRINT
1378
1379
               GO TO 100
1380
          300 ENDIF
1381
1382
        Č
1383
          400 IF (BLK) THEN
1384
               ICARD = ICARD +1
1385
               IBR(ICARD, ISITE, IMEAS) = CARD
          500 IF (CARD(1:2).EQ.EBC) THEN
1386
1387
              BLK = .FALSE.
               CARD = '*ADD, BLOCK'
1388
1389
               WRITE (CARD(11:14), (212)) ISITE, IMEAS
1390
              El SE
1391
               GO TO 100
1392
          600 ENDIF
1393
        С
1394
        С
          700 ENDIF
1395
               WRITE (111,'(A80)') CARD
1396
1397
               IF(CARD(1:2).NE.ERC) GO TO 100
1398
          720 CONTINUE
1399
               REWIND 111
1400
               PUT SITES WITH NO DAMAGE CENTERS INTO ISUB ARRAY
1401
        С
               LATER A ZERO WILL BE INSERTED INTO THE DAMAGE ARRAY
1402
1403
          740 READ(111,'(A80)',END=780) CARD IF(CARD(1:4).EQ.'*ADD') THEN
1404
1405
               READ(CARD(11:12),'(12)') ITEST
1406
              READ(111,'(A80)',END=780) CARD IF(CARD(1:2).NE.'DA') THEN
1407
1408
1409
               ISUB(ITEST) = ITEST
1410
              ELSE
1411
               ISUB(ITEST) = 0
1412
               ENDIF
1413
              ENDIF
1414
               IF(CARD(1:2).NE.ERC) GO TO 740
          780 CONTINUE
1415
1416
        С
          800 REWIND 111
1417
1418
          999 RETURN
1419
              END
```

REPORT DOCUMENTATION PAGE							Form Approved OMB No. 0704-0188			
1a. REPORT SECURITY CLASSIFICATION				16 RESTRICTIVE MARKINGS						
UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY				3 DISTRIBUTION / AVAILABILITY OF REPORT						
28. SECURITY CLASSIFICATION AUTHORITY			5. 5.5. NIGOTION AVAILABILITY OF NET ON							
26. DECLASSIFICATION / DOWNGRADING SCHEDULE										
4. PERFORMING ORGANIZATION REPORT NUMBER(S)				5. MONITORING ORGANIZATION REPORT NUMBER(S)						
RESEARCH DOCUMENT 35										
			6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION WATER RESOURCES SUPPORT CENTER						
HYDROLOGIC ENGINEERING CENTER			CEWRC-HEC	WATER RESOURCES SOFFORT GENTER						
6c. ADDRESS (City, State, and ZIP Code)				7b. ADDRESS (City, State, and ZIP Code)						
	CA OFFICE			CASEY BLDG 2594						
DAVIS,	CA 95616	1		FT. BELVOIR, VA 22060						
	FUNDING / SPC	ONSORING	8b. OFFICE SYMBOL	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER						
ORGANIZA	ATION		(If applicable)							
8c. ADDRESS (City, State, and ZIP Code)				10. SOURCE OF FUNDING NUMBERS						
				PROGRAM	PROJECT	TASK	WORK UNIT ACCESSION NO.			
				ELEMENT NO.	NO.	NO.	ACCESSION NO.			
11. TITLE (Include Security Classification)										
BRANCH-BOUND ENUMERATION FOR RESERVOIR FLOOD CONTROL PLAN SELECTION (UNCLASSIFIED)										
12. PERSONAL	AUTHOR(S)		 	 						
	H. BOWEN									
				14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT MAY 1987 95						
16. SUPPLEMENTARY NOTATION										
17.	COSATI	CODES	18. SUBJECT TERMS (-	-			
FIELD	GROUP	SUB-GROUP	OPTIMIZATION,			L, PLAI	N SELECTION,			
 			SYSTEMS ANALY	STEMS ANALYSIS, ECONOMIC ANALYSIS						
19. ABSTRACT (Continue on reverse if necessary and identify by block number)										
THIS THESIS DOCUMENTS THE DEVELOPMENT AND APPLICATION OF A BRANCH AND BOUND ENUMERATION										
ALGORITHM FOR THE SELECTION OF AN OPTIMAL FLOOD CONTROL PLAN. AN APPLICATION IS PRESENTED IN WHICH OPTIMAL RESERVOIR FLOOD CONTROL PLANS FOR A THREE RESERVOIR SYSTEM										
ARE SELECTED.										
COMPUTER PROGRAM HEC-5 IS USED TO SIMULATE THE RESERVOIR SYSTEM TO DETERMINE THE MODIFIED CONDITION FLOW-FREQUENCY CURVES, EAD IS USED TO EVALUATE EXPECTED ANNUAL DAMAGE REDUCTIONS										
AND THE HEC-DSS PROGRAMS ARE USED TO MANAGE THE LARGE AMOUNTS OF DATA REQUIRED FOR THE										
COMPUTATIONS. THE BRANCH AND BOUND ENUMERATION ALGORITHM PROVIDES A SYSTEMATIC EVALUATION										
OF PLANS WITH THE HEC PROGRAMS AND EXPEDITES IDENTIFICATION OF THE OPTIMAL PLAN BY										
ELIMINATING THE NEED TO EVALUATE ALL ALTERNATIVE PLANS.										
20. DISTRIBUT	ION/AVAILAB	ILITY OF ABSTRACT		21 ABSTRACT SE	1 ABSTRACT SECURITY CLASSIFICATION					
☑ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT. ☐ DTIC USERS				UNCLASSI			SIGE CHARGE			
DARRYL W. DAVIS, DIRECTOR, HEC				9916) 756-	include Area Code) -1104		C-HEC			
DD Sorm 147	2 1111 06		Onessia sa adibiona ana	cheolote	CCCUDITY	CL ACCICICA	ATION OF THIS BAGE			

UNCLASSIFIED

END